General Information of Disease (ID: DISWNEQ1)

Disease Name Refractive error
Definition A defect in the focusing of light on the retina as in astigmatism, myopia, or hyperopia.
Disease Hierarchy
DISB52BH: Eye disorder
DISWNEQ1: Refractive error
Disease Identifiers
MONDO ID
MONDO_0004892
MESH ID
D012030
UMLS CUI
C0034951
MedGen ID
20508
SNOMED CT ID
39021009

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 11 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
GJD2 TTOZAFI moderate Genetic Variation [1]
CACNA1D TT7RGTM Strong Genetic Variation [2]
GRIA4 TTPJR0G Strong Genetic Variation [2]
GRM6 TTWRP2F Strong Genetic Variation [3]
KCNQ5 TTWVL5Q Strong Genetic Variation [2]
PCCA TT1JDE3 Strong Genetic Variation [2]
RORB TTGB2LZ Strong Genetic Variation [2]
RS1 TTT2CZY Strong Genetic Variation [4]
SERPINI2 TTFS1T2 Strong Genetic Variation [5]
SLC38A1 TT1YE9Z Strong Biomarker [6]
VIPR2 TT4O5P0 Strong Genetic Variation [7]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC14A2 DT8QC7K Strong Biomarker [6]
------------------------------------------------------------------------------------
This Disease Is Related to 2 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CHDH DEAHED0 Strong Genetic Variation [2]
RDH5 DESI4OK Strong Genetic Variation [2]
------------------------------------------------------------------------------------
This Disease Is Related to 24 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
RASGRF1 OTNWJ7EN Limited Genetic Variation [2]
SHISA6 OTWBCJ8O moderate Genetic Variation [8]
ACTC1 OTJU04B1 Strong Biomarker [9]
APLP2 OTTFE53M Strong Genetic Variation [10]
ARID2 OTIRJXWM Strong Biomarker [6]
B3GAT3 OTDSN5XF Strong Biomarker [11]
C14orf39 OTFKQ6HO Strong Genetic Variation [2]
CHRNG OTXC2UR7 Strong Genetic Variation [2]
CNDP2 OTJR9436 Strong Genetic Variation [2]
DNAH9 OTI2QIZQ Strong Genetic Variation [8]
ECEL1 OTJ6GNUP Strong Genetic Variation [12]
HERC2 OTNQYKOB Strong Biomarker [13]
LAMA2 OTFROQWE Strong Genetic Variation [2]
MYO1D OTP2RGPN Strong Genetic Variation [2]
MYOC OT6DAHNF Strong Biomarker [14]
NRL OT65MFKQ Strong Genetic Variation [15]
PHLDA2 OTMV9DPP Strong Biomarker [16]
PLK3 OT19CT2Z Strong Biomarker [17]
PRSS56 OTPPXTBB Strong Biomarker [18]
PTPRR OT790UA2 Strong Genetic Variation [2]
SMIM10L2B OT04IG2N Strong Biomarker [19]
TJP2 OTQUY6BV Strong Genetic Variation [2]
TOX OTE8BL5Z Strong Genetic Variation [20]
RBFOX1 OTFPKEL7 Definitive Genetic Variation [2]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 DOT(s)

References

1 Variation in PTCHD2, CRISP3, NAP1L4, FSCB, and AP3B2 associated with spherical equivalent.Mol Vis. 2016 Jul 14;22:783-96. eCollection 2016.
2 Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia.Nat Genet. 2013 Mar;45(3):314-8. doi: 10.1038/ng.2554. Epub 2013 Feb 10.
3 A phenotypic study of congenital stationary night blindness (CSNB) associated with mutations in the GRM6 gene.Acta Ophthalmol. 2012 May;90(3):e192-7. doi: 10.1111/j.1755-3768.2011.02267.x. Epub 2011 Oct 19.
4 Clinical characteristics of 14 japanese patients with X-linked juvenile retinoschisis associated with XLRS1 mutation.Ophthalmic Genet. 2000 Sep;21(3):171-80.
5 Common polymorphisms in the SERPINI2 gene are associated with refractive error in the 1958 British Birth Cohort.Invest Ophthalmol Vis Sci. 2012 Jan 25;53(1):440-7. doi: 10.1167/iovs.10-5640.
6 Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error.Nat Commun. 2016 Mar 29;7:11008. doi: 10.1038/ncomms11008.
7 Genetic susceptibility to refractive error: association of vasoactive intestinal peptide receptor 2 (VIPR2) with high myopia in Chinese.PLoS One. 2013 Apr 18;8(4):e61805. doi: 10.1371/journal.pone.0061805. Print 2013.
8 Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies.Hum Mol Genet. 2014 Jan 15;23(2):546-54. doi: 10.1093/hmg/ddt431. Epub 2013 Sep 6.
9 A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14.Nat Genet. 2010 Oct;42(10):897-901. doi: 10.1038/ng.663. Epub 2010 Sep 12.
10 APLP2 Regulates Refractive Error and Myopia Development in Mice and Humans.PLoS Genet. 2015 Aug 27;11(8):e1005432. doi: 10.1371/journal.pgen.1005432. eCollection 2015 Aug.
11 Corneal clouding, cataract, and colobomas with a novel missense mutation in B4GALT7-a review of eye anomalies in the linkeropathy syndromes.Am J Med Genet A. 2016 Oct;170(10):2711-8. doi: 10.1002/ajmg.a.37809. Epub 2016 Jun 20.
12 Expanding the phenotypic spectrum of ECEL1-related congenital contracture syndromes.Clin Genet. 2014 Jun;85(6):562-7. doi: 10.1111/cge.12224. Epub 2013 Jul 19.
13 Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci.Hum Genet. 2018 Dec;137(11-12):881-896. doi: 10.1007/s00439-018-1942-8. Epub 2018 Oct 10.
14 Phenotypic differences between familial versus non-familial Juvenile onset open angle glaucoma patients.Ophthalmic Genet. 2018 Jan-Feb;39(1):63-67. doi: 10.1080/13816810.2017.1368088. Epub 2017 Sep 14.
15 Novel mutations in the NRL gene and associated clinical findings in patients with dominant retinitis pigmentosa.Arch Ophthalmol. 2002 Mar;120(3):369-75. doi: 10.1001/archopht.120.3.369.
16 Macular Ganglion Cell and Retinal Nerve Fiber Layer Thickness in Children With Refractive Errors-An Optical Coherence Tomography Study.J Glaucoma. 2017 Jul;26(7):619-625. doi: 10.1097/IJG.0000000000000683.
17 Surgical Options for the Refractive Correction of Keratoconus: Myth or Reality.J Ophthalmol. 2017;2017:7589816. doi: 10.1155/2017/7589816. Epub 2017 Dec 18.
18 Mller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error.PLoS Genet. 2018 Mar 12;14(3):e1007244. doi: 10.1371/journal.pgen.1007244. eCollection 2018 Mar.
19 Demyelination and shrinkage of axons in the retinal nerve fiber layer in chickens developing deprivation myopia.Exp Eye Res. 2019 Nov;188:107783. doi: 10.1016/j.exer.2019.107783. Epub 2019 Aug 29.
20 Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium.Hum Genet. 2015 Feb;134(2):131-46. doi: 10.1007/s00439-014-1500-y. Epub 2014 Nov 4.