General Information of Drug Off-Target (DOT) (ID: OTFROQWE)

DOT Name Laminin subunit alpha-2 (LAMA2)
Synonyms Laminin M chain; Laminin-12 subunit alpha; Laminin-2 subunit alpha; Laminin-4 subunit alpha; Merosin heavy chain
Gene Name LAMA2
Related Disease
Colorectal carcinoma ( )
Congenital merosin-deficient muscular dystrophy 1A ( )
LAMA2-related muscular dystrophy ( )
Lung adenocarcinoma ( )
Adult glioblastoma ( )
Advanced cancer ( )
Amoebiasis ( )
Autosomal recessive limb-girdle muscular dystrophy type 2C ( )
Campomelic dysplasia ( )
Congenital muscular dystrophy ( )
Craniometaphyseal dysplasia, autosomal dominant ( )
Distal myopathy ( )
Duchenne muscular dystrophy ( )
Ependymoma ( )
Glioblastoma multiforme ( )
Hepatocellular carcinoma ( )
Intestinal amebiasis ( )
Leigh syndrome ( )
Medullary sponge kidney ( )
Muscle-eye-brain disease ( )
Muscular dystrophy ( )
Muscular dystrophy, limb-girdle, autosomal recessive 23 ( )
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 ( )
Myopathy ( )
Myopia ( )
Myositis disease ( )
Neuromuscular disease ( )
Peripheral neuropathy ( )
Refractive error ( )
Schizophrenia ( )
Thyroid tumor ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
West syndrome ( )
Limb-girdle muscular dystrophy ( )
Neoplasm ( )
Respiratory failure ( )
Ullrich congenital muscular dystrophy 1A ( )
Toxic shock syndrome ( )
Dilated cardiomyopathy ( )
Intellectual disability ( )
Muscular dystrophy-dystroglycanopathy, type A ( )
UniProt ID
LAMA2_HUMAN
PDB ID
4YEP; 4YEQ
Pfam ID
PF00052 ; PF00053 ; PF00054 ; PF02210 ; PF06008 ; PF06009 ; PF00055
Sequence
MPGAAGVLLLLLLSGGLGGVQAQRPQQQRQSQAHQQRGLFPAVLNLASNALITTNATCGE
KGPEMYCKLVEHVPGQPVRNPQCRICNQNSSNPNQRHPITNAIDGKNTWWQSPSIKNGIE
YHYVTITLDLQQVFQIAYVIVKAANSPRPGNWILERSLDDVEYKPWQYHAVTDTECLTLY
NIYPRTGPPSYAKDDEVICTSFYSKIHPLENGEIHISLINGRPSADDPSPELLEFTSARY
IRLRFQRIRTLNADLMMFAHKDPREIDPIVTRRYYYSVKDISVGGMCICYGHARACPLDP
ATNKSRCECEHNTCGDSCDQCCPGFHQKPWRAGTFLTKTECEACNCHGKAEECYYDENVA
RRNLSLNIRGKYIGGGVCINCTQNTAGINCETCTDGFFRPKGVSPNYPRPCQPCHCDPIG
SLNEVCVKDEKHARRGLAPGSCHCKTGFGGVSCDRCARGYTGYPDCKACNCSGLGSKNED
PCFGPCICKENVEGGDCSRCKSGFFNLQEDNWKGCDECFCSGVSNRCQSSYWTYGKIQDM
SGWYLTDLPGRIRVAPQQDDLDSPQQISISNAEARQALPHSYYWSAPAPYLGNKLPAVGG
QLTFTISYDLEEEEEDTERVLQLMIILEGNDLSISTAQDEVYLHPSEEHTNVLLLKEESF
TIHGTHFPVRRKEFMTVLANLKRVLLQITYSFGMDAIFRLSSVNLESAVSYPTDGSIAAA
VEVCQCPPGYTGSSCESCWPRHRRVNGTIFGGICEPCQCFGHAESCDDVTGECLNCKDHT
GGPYCDKCLPGFYGEPTKGTSEDCQPCACPLNIPSNNFSPTCHLDRSLGLICDGCPVGYT
GPRCERCAEGYFGQPSVPGGSCQPCQCNDNLDFSIPGSCDSLSGSCLICKPGTTGRYCEL
CADGYFGDAVDAKNCQPCRCNAGGSFSEVCHSQTGQCECRANVQGQRCDKCKAGTFGLQS
ARGCVPCNCNSFGSKSFDCEESGQCWCQPGVTGKKCDRCAHGYFNFQEGGCTACECSHLG
NNCDPKTGRCICPPNTIGEKCSKCAPNTWGHSITTGCKACNCSTVGSLDFQCNVNTGQCN
CHPKFSGAKCTECSRGHWNYPRCNLCDCFLPGTDATTCDSETKKCSCSDQTGQCTCKVNV
EGIHCDRCRPGKFGLDAKNPLGCSSCYCFGTTTQCSEAKGLIRTWVTLKAEQTILPLVDE
ALQHTTTKGIVFQHPEIVAHMDLMREDLHLEPFYWKLPEQFEGKKLMAYGGKLKYAIYFE
AREETGFSTYNPQVIIRGGTPTHARIIVRHMAAPLIGQLTRHEIEMTEKEWKYYGDDPRV
HRTVTREDFLDILYDIHYILIKATYGNFMRQSRISEISMEVAEQGRGTTMTPPADLIEKC
DCPLGYSGLSCEACLPGFYRLRSQPGGRTPGPTLGTCVPCQCNGHSSLCDPETSICQNCQ
HHTAGDFCERCALGYYGIVKGLPNDCQQCACPLISSSNNFSPSCVAEGLDDYRCTACPRG
YEGQYCERCAPGYTGSPGNPGGSCQECECDPYGSLPVPCDPVTGFCTCRPGATGRKCDGC
KHWHAREGWECVFCGDECTGLLLGDLARLEQMVMSINLTGPLPAPYKMLYGLENMTQELK
HLLSPQRAPERLIQLAEGNLNTLVTEMNELLTRATKVTADGEQTGQDAERTNTRAKSLGE
FIKELARDAEAVNEKAIKLNETLGTRDEAFERNLEGLQKEIDQMIKELRRKNLETQKEIA
EDELVAAEALLKKVKKLFGESRGENEEMEKDLREKLADYKNKVDDAWDLLREATDKIREA
NRLFAVNQKNMTALEKKKEAVESGKRQIENTLKEGNDILDEANRLADEINSIIDYVEDIQ
TKLPPMSEELNDKIDDLSQEIKDRKLAEKVSQAESHAAQLNDSSAVLDGILDEAKNISFN
ATAAFKAYSNIKDYIDEAEKVAKEAKDLAHEATKLATGPRGLLKEDAKGCLQKSFRILNE
AKKLANDVKENEDHLNGLKTRIENADARNGDLLRTLNDTLGKLSAIPNDTAAKLQAVKDK
ARQANDTAKDVLAQITELHQNLDGLKKNYNKLADSVAKTNAVVKDPSKNKIIADADATVK
NLEQEADRLIDKLKPIKELEDNLKKNISEIKELINQARKQANSIKVSVSSGGDCIRTYKP
EIKKGSYNNIVVNVKTAVADNLLFYLGSAKFIDFLAIEMRKGKVSFLWDVGSGVGRVEYP
DLTIDDSYWYRIVASRTGRNGTISVRALDGPKASIVPSTHHSTSPPGYTILDVDANAMLF
VGGLTGKLKKADAVRVITFTGCMGETYFDNKPIGLWNFREKEGDCKGCTVSPQVEDSEGT
IQFDGEGYALVSRPIRWYPNISTVMFKFRTFSSSALLMYLATRDLRDFMSVELTDGHIKV
SYDLGSGMASVVSNQNHNDGKWKSFTLSRIQKQANISIVDIDTNQEENIATSSSGNNFGL
DLKADDKIYFGGLPTLRNLSMKARPEVNLKKYSGCLKDIEISRTPYNILSSPDYVGVTKG
CSLENVYTVSFPKPGFVELSPVPIDVGTEINLSFSTKNESGIILLGSGGTPAPPRRKRRQ
TGQAYYAILLNRGRLEVHLSTGARTMRKIVIRPEPNLFHDGREHSVHVERTRGIFTVQVD
ENRRYMQNLTVEQPIEVKKLFVGGAPPEFQPSPLRNIPPFEGCIWNLVINSVPMDFARPV
SFKNADIGRCAHQKLREDEDGAAPAEIVIQPEPVPTPAFPTPTPVLTHGPCAAESEPALL
IGSKQFGLSRNSHIAIAFDDTKVKNRLTIELEVRTEAESGLLFYMARINHADFATVQLRN
GLPYFSYDLGSGDTHTMIPTKINDGQWHKIKIMRSKQEGILYVDGASNRTISPKKADILD
VVGMLYVGGLPINYTTRRIGPVTYSIDGCVRNLHMAEAPADLEQPTSSFHVGTCFANAQR
GTYFDGTGFAKAVGGFKVGLDLLVEFEFRTTTTTGVLLGISSQKMDGMGIEMIDEKLMFH
VDNGAGRFTAVYDAGVPGHLCDGQWHKVTANKIKHRIELTVDGNQVEAQSPNPASTSADT
NDPVFVGGFPDDLKQFGLTTSIPFRGCIRSLKLTKGTGKPLEVNFAKALELRGVQPVSCP
AN
Function
Binding to cells via a high affinity receptor, laminin is thought to mediate the attachment, migration and organization of cells into tissues during embryonic development by interacting with other extracellular matrix components.
Tissue Specificity
Placenta, striated muscle, peripheral nerve, cardiac muscle, pancreas, lung, spleen, kidney, adrenal gland, skin, testis, meninges, choroid plexus, and some other regions of the brain; not in liver, thymus and bone.
KEGG Pathway
PI3K-Akt sig.ling pathway (hsa04151 )
Focal adhesion (hsa04510 )
ECM-receptor interaction (hsa04512 )
Cytoskeleton in muscle cells (hsa04820 )
Toxoplasmosis (hsa05145 )
Amoebiasis (hsa05146 )
Human papillomavirus infection (hsa05165 )
Pathways in cancer (hsa05200 )
Small cell lung cancer (hsa05222 )
Hypertrophic cardiomyopathy (hsa05410 )
Arrhythmogenic right ventricular cardiomyopathy (hsa05412 )
Dilated cardiomyopathy (hsa05414 )
Viral myocarditis (hsa05416 )
Reactome Pathway
Non-integrin membrane-ECM interactions (R-HSA-3000171 )
ECM proteoglycans (R-HSA-3000178 )
MET activates PTK2 signaling (R-HSA-8874081 )
EGR2 and SOX10-mediated initiation of Schwann cell myelination (R-HSA-9619665 )
Laminin interactions (R-HSA-3000157 )

Molecular Interaction Atlas (MIA) of This DOT

42 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Colorectal carcinoma DIS5PYL0 Definitive Posttranslational Modification [1]
Congenital merosin-deficient muscular dystrophy 1A DISW3KEU Definitive Autosomal recessive [2]
LAMA2-related muscular dystrophy DIS99VM0 Definitive Autosomal recessive [2]
Lung adenocarcinoma DISD51WR Definitive Altered Expression [3]
Adult glioblastoma DISVP4LU Strong Biomarker [4]
Advanced cancer DISAT1Z9 Strong Biomarker [4]
Amoebiasis DISAJWJL Strong Altered Expression [5]
Autosomal recessive limb-girdle muscular dystrophy type 2C DISE0ICN Strong Genetic Variation [6]
Campomelic dysplasia DISVTW53 Strong Biomarker [7]
Congenital muscular dystrophy DISKY7OY Strong Genetic Variation [8]
Craniometaphyseal dysplasia, autosomal dominant DISU12OO Strong Biomarker [7]
Distal myopathy DIS7F5R0 Strong Genetic Variation [6]
Duchenne muscular dystrophy DISRQ3NV Strong Biomarker [9]
Ependymoma DISUMRNZ Strong Biomarker [4]
Glioblastoma multiforme DISK8246 Strong Biomarker [4]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [10]
Intestinal amebiasis DIS0IHMD Strong Altered Expression [5]
Leigh syndrome DISWQU45 Strong Biomarker [11]
Medullary sponge kidney DISA0949 Strong Biomarker [12]
Muscle-eye-brain disease DISJUOQB Strong Biomarker [13]
Muscular dystrophy DISJD6P7 Strong Biomarker [14]
Muscular dystrophy, limb-girdle, autosomal recessive 23 DISBBEUO Strong Autosomal recessive [15]
Muscular dystrophy-dystroglycanopathy (congenital with brain and eye anomalies), type A, 4 DISGM0K5 Strong Biomarker [16]
Myopathy DISOWG27 Strong Biomarker [17]
Myopia DISK5S60 Strong Genetic Variation [18]
Myositis disease DISCIXF0 Strong Genetic Variation [19]
Neuromuscular disease DISQTIJZ Strong Biomarker [20]
Peripheral neuropathy DIS7KN5G Strong Genetic Variation [21]
Refractive error DISWNEQ1 Strong Genetic Variation [22]
Schizophrenia DISSRV2N Strong Biomarker [23]
Thyroid tumor DISLVKMD Strong Biomarker [24]
Urinary bladder cancer DISDV4T7 Strong Biomarker [25]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [25]
West syndrome DISLIAU9 Strong Genetic Variation [26]
Limb-girdle muscular dystrophy DISI9Y1Z moderate Genetic Variation [27]
Neoplasm DISZKGEW moderate Posttranslational Modification [28]
Respiratory failure DISVMYJO moderate Genetic Variation [29]
Ullrich congenital muscular dystrophy 1A DISFHHF0 moderate Biomarker [30]
Toxic shock syndrome DISX5S53 Disputed Biomarker [31]
Dilated cardiomyopathy DISX608J Limited Genetic Variation [32]
Intellectual disability DISMBNXP Limited Genetic Variation [33]
Muscular dystrophy-dystroglycanopathy, type A DISZTBC4 Limited Biomarker [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cisplatin DMRHGI9 Approved Laminin subunit alpha-2 (LAMA2) increases the response to substance of Cisplatin. [47]
Methotrexate DM2TEOL Approved Laminin subunit alpha-2 (LAMA2) increases the response to substance of Methotrexate. [47]
Paclitaxel DMLB81S Approved Laminin subunit alpha-2 (LAMA2) increases the response to substance of Paclitaxel. [47]
Topotecan DMP6G8T Approved Laminin subunit alpha-2 (LAMA2) increases the response to substance of Topotecan. [47]
Mitoxantrone DMM39BF Approved Laminin subunit alpha-2 (LAMA2) affects the response to substance of Mitoxantrone. [48]
------------------------------------------------------------------------------------
13 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Laminin subunit alpha-2 (LAMA2). [35]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Laminin subunit alpha-2 (LAMA2). [36]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Laminin subunit alpha-2 (LAMA2). [37]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Laminin subunit alpha-2 (LAMA2). [39]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Laminin subunit alpha-2 (LAMA2). [40]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Laminin subunit alpha-2 (LAMA2). [41]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Laminin subunit alpha-2 (LAMA2). [36]
Mifepristone DMGZQEF Approved Mifepristone decreases the expression of Laminin subunit alpha-2 (LAMA2). [42]
Alitretinoin DMME8LH Approved Alitretinoin decreases the expression of Laminin subunit alpha-2 (LAMA2). [36]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Laminin subunit alpha-2 (LAMA2). [44]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Laminin subunit alpha-2 (LAMA2). [45]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Laminin subunit alpha-2 (LAMA2). [46]
all-trans-4-oxo-retinoic acid DMM2R1N Investigative all-trans-4-oxo-retinoic acid decreases the expression of Laminin subunit alpha-2 (LAMA2). [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic increases the methylation of Laminin subunit alpha-2 (LAMA2). [25]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Laminin subunit alpha-2 (LAMA2). [43]
------------------------------------------------------------------------------------

References

1 Identification of GABRA1 and LAMA2 as new DNA methylation markers in colorectal cancer.Int J Oncol. 2012 Mar;40(3):889-98. doi: 10.3892/ijo.2011.1245. Epub 2011 Oct 25.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 Selective assembly of laminin variants by human carcinoma cells.Lab Invest. 1994 Nov;71(5):719-30.
4 Laminin alpha 2 enables glioblastoma stem cell growth.Ann Neurol. 2012 Nov;72(5):766-78. doi: 10.1002/ana.23674.
5 Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data.Med Oncol. 2017 Sep 26;34(11):182. doi: 10.1007/s12032-017-1043-x.
6 Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion.Methods Mol Biol. 2018;1828:79-90. doi: 10.1007/978-1-4939-8651-4_5.
7 Longitudinal changes in clinical outcome measures in COL6-related dystrophies and LAMA2-related dystrophies.Neurology. 2019 Nov 19;93(21):e1932-e1943. doi: 10.1212/WNL.0000000000008517. Epub 2019 Oct 25.
8 Missense mutations in LAMA2 causing a new phenotype of mild cognitive impairment, proximal myopathy, seizure, and severe leukoencephalopathy: A case report and protein analysis.Clin Neuropathol. 2019 May/Jun;38(3):100-108. doi: 10.5414/NP301137.
9 Pax7, Pax3 and Mamstr genes are involved in skeletal muscle impaired regeneration of dy2J/dy2J mouse model of Lama2-CMD.Hum Mol Genet. 2019 Oct 15;28(20):3369-3390. doi: 10.1093/hmg/ddz180.
10 Diverse modes of genomic alteration in hepatocellular carcinoma.Genome Biol. 2014 Aug 26;15(8):436. doi: 10.1186/s13059-014-0436-9.
11 Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells.Sci Rep. 2017 Apr 3;7:45272. doi: 10.1038/srep45272.
12 Breaking the ice: urine proteomics of medullary sponge kidney disease.Kidney Int. 2017 Feb;91(2):281-283. doi: 10.1016/j.kint.2016.10.032.
13 Merosin-positive congenital muscular dystrophy with mental retardation, microcephaly and central nervous system abnormalities unlinked to the Fukuyama muscular dystrophy and muscular-eye-brain loci: report of three siblings.Neuromuscul Disord. 2001 Sep;11(6-7):570-8. doi: 10.1016/s0960-8966(01)00199-7.
14 Molecular Genetics Analysis of 70 Chinese Families With Muscular Dystrophy Using Multiplex Ligation-Dependent Probe Amplification and Next-Generation Sequencing.Front Pharmacol. 2019 Jul 25;10:814. doi: 10.3389/fphar.2019.00814. eCollection 2019.
15 LAMA2 Muscular Dystrophy. 2012 Jun 7 [updated 2020 Sep 17]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
16 Designing Effective Antisense Oligonucleotides for Exon Skipping.Methods Mol Biol. 2018;1687:143-155. doi: 10.1007/978-1-4939-7374-3_10.
17 Increased polyamines as protective disease modifiers in congenital muscular dystrophy.Hum Mol Genet. 2018 Jun 1;27(11):1905-1912. doi: 10.1093/hmg/ddy097.
18 Controversial opinion: evaluation of EGR1 and LAMA2 loci for high myopia in Chinese populations.J Zhejiang Univ Sci B. 2016 Mar;17(3):225-35. doi: 10.1631/jzus.B1500233.
19 Partial laminin alpha2 chain deficiency in a patient with myopathy resembling inclusion body myositis.Ann Neurol. 2000 Jun;47(6):811-6.
20 Muscle-specific BCL2 expression ameliorates muscle disease in laminin {alpha}2-deficient, but not in dystrophin-deficient, mice.Hum Mol Genet. 2005 Apr 15;14(8):1029-40. doi: 10.1093/hmg/ddi095. Epub 2005 Mar 9.
21 Limb girdle muscular dystrophy due to LAMA2 mutations: diagnostic difficulties due to associated peripheral neuropathy.Neuromuscul Disord. 2014 Aug;24(8):677-83. doi: 10.1016/j.nmd.2014.05.008. Epub 2014 Jun 2.
22 Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia.Nat Genet. 2013 Mar;45(3):314-8. doi: 10.1038/ng.2554. Epub 2013 Feb 10.
23 De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet. 2012 Dec;44(12):1365-9. doi: 10.1038/ng.2446. Epub 2012 Oct 3.
24 Expression of laminin-2 by normal and neoplastic rat C cells during the development of medullary thyroid carcinoma.Virchows Arch. 1999 Apr;434(4):325-32. doi: 10.1007/s004280050348.
25 Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol. 2015 Jun 15;28(6):1144-55. doi: 10.1021/tx500393y. Epub 2015 Jun 3.
26 LAMA2-related congenital muscular dystrophy complicated by West syndrome.Eur J Paediatr Neurol. 2015 Mar;19(2):243-7. doi: 10.1016/j.ejpn.2014.11.005. Epub 2014 Dec 2.
27 Clinical and neuroimaging findings in two brothers with limb girdle muscular dystrophy due to LAMA2 mutations.Neuromuscul Disord. 2017 Feb;27(2):170-174. doi: 10.1016/j.nmd.2016.10.009. Epub 2016 Nov 3.
28 Expression and methylation status of LAMA2 are associated with the invasiveness of nonfunctioning PitNET.Ther Adv Endocrinol Metab. 2019 Jan 29;10:2042018818821296. doi: 10.1177/2042018818821296. eCollection 2019.
29 An early onset muscular dystrophy with diaphragmatic involvement, early respiratory failure and secondary alpha2 laminin deficiency unlinked to the LAMA2 locus on 6q22.Eur J Paediatr Neurol. 1998;2(1):19-26. doi: 10.1016/1090-3798(98)01001-9.
30 Congenital muscular dystrophies.Handb Clin Neurol. 2013;113:1377-85. doi: 10.1016/B978-0-444-59565-2.00008-3.
31 Staphylococcal Superantigens Use LAMA2 as a Coreceptor To Activate T Cells.J Immunol. 2018 Feb 15;200(4):1471-1479. doi: 10.4049/jimmunol.1701212. Epub 2018 Jan 15.
32 Dilated cardiomyopathy with conduction defects in a patient with partial merosin deficiency due to mutations in the laminin-2-chain gene: a chance association or a novel phenotype?.Muscle Nerve. 2011 Nov;44(5):826-8. doi: 10.1002/mus.22228.
33 Merosin-deficient congenital muscular dystrophy with mental retardation and cerebellar cysts, unlinked to the LAMA2, FCMD, MEB and CMD1B loci, in three Tunisian patients.Neuromuscul Disord. 2003 Jan;13(1):4-12. doi: 10.1016/s0960-8966(02)00188-8.
34 Profound skeletal muscle depletion of alpha-dystroglycan in Walker-Warburg syndrome.Eur J Paediatr Neurol. 2003;7(3):129-37. doi: 10.1016/s1090-3798(03)00042-4.
35 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
36 Retinoic acid and its 4-oxo metabolites are functionally active in human skin cells in vitro. J Invest Dermatol. 2005 Jul;125(1):143-53.
37 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
38 Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol. 2015 Jun 15;28(6):1144-55. doi: 10.1021/tx500393y. Epub 2015 Jun 3.
39 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
40 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
41 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
42 Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007 Sep;13(9):641-54.
43 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
44 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
45 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
46 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
47 Microarray-based detection and expression analysis of extracellular matrix proteins in drug?resistant ovarian cancer cell lines. Oncol Rep. 2014 Nov;32(5):1981-90. doi: 10.3892/or.2014.3468. Epub 2014 Sep 9.
48 Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Oncogene. 2005 Nov 17;24(51):7542-51. doi: 10.1038/sj.onc.1208908.