General Information of Drug Off-Target (DOT) (ID: OTNQYKOB)

DOT Name E3 ubiquitin-protein ligase HERC2 (HERC2)
Synonyms EC 2.3.2.26; HECT domain and RCC1-like domain-containing protein 2; HECT-type E3 ubiquitin transferase HERC2
Gene Name HERC2
Related Disease
T lymphoblastic leukaemia ( )
Type-1 diabetes ( )
Advanced cancer ( )
Alzheimer disease ( )
Autism spectrum disorder ( )
Breast cancer ( )
Breast carcinoma ( )
Colon cancer ( )
Colorectal adenocarcinoma ( )
Colorectal cancer ( )
Colorectal cancer, susceptibility to, 1 ( )
Colorectal cancer, susceptibility to, 10 ( )
Colorectal cancer, susceptibility to, 12 ( )
Colorectal carcinoma ( )
Colorectal neoplasm ( )
Crohn disease ( )
Developmental delay with autism spectrum disorder and gait instability ( )
Intellectual disability ( )
Melanoma ( )
Myopia ( )
Neurodevelopmental disorder ( )
Non-small-cell lung cancer ( )
Ocular albinism ( )
Oculocutaneous albinism ( )
Oculocutaneous albinism type 2 ( )
Pervasive developmental disorder ( )
Refractive error ( )
Squamous cell carcinoma ( )
Ulcerative colitis ( )
Vitiligo ( )
Xeroderma pigmentosum ( )
Angelman syndrome ( )
Breast neoplasm ( )
Glaucoma/ocular hypertension ( )
Neuroblastoma ( )
Asthma ( )
Basal cell carcinoma ( )
Basal cell neoplasm ( )
Cutaneous squamous cell carcinoma ( )
Skin cancer ( )
UniProt ID
HERC2_HUMAN
PDB ID
2KEO; 3KCI; 4L1M; 6WW3; 6WW4; 7Q40; 7Q41; 7Q42; 7Q43; 7Q44; 7Q45; 7Q46; 7RGW
EC Number
2.3.2.26
Pfam ID
PF03256 ; PF11515 ; PF00173 ; PF00632 ; PF06701 ; PF00415 ; PF00569
Sequence
MPSESFCLAAQARLDSKWLKTDIQLAFTRDGLCGLWNEMVKDGEIVYTGTESTQNGELPP
RKDDSVEPSGTKKEDLNDKEKKDEEETPAPIYRAKSILDSWVWGKQPDVNELKECLSVLV
KEQQALAVQSATTTLSALRLKQRLVILERYFIALNRTVFQENVKVKWKSSGISLPPVDKK
SSRPAGKGVEGLARVGSRAALSFAFAFLRRAWRSGEDADLCSELLQESLDALRALPEASL
FDESTVSSVWLEVVERATRFLRSVVTGDVHGTPATKGPGSIPLQDQHLALAILLELAVQR
GTLSQMLSAILLLLQLWDSGAQETDNERSAQGTSAPLLPLLQRFQSIICRKDAPHSEGDM
HLLSGPLSPNESFLRYLTLPQDNELAIDLRQTAVVVMAHLDRLATPCMPPLCSSPTSHKG
SLQEVIGWGLIGWKYYANVIGPIQCEGLANLGVTQIACAEKRFLILSRNGRVYTQAYNSD
TLAPQLVQGLASRNIVKIAAHSDGHHYLALAATGEVYSWGCGDGGRLGHGDTVPLEEPKV
ISAFSGKQAGKHVVHIACGSTYSAAITAEGELYTWGRGNYGRLGHGSSEDEAIPMLVAGL
KGLKVIDVACGSGDAQTLAVTENGQVWSWGDGDYGKLGRGGSDGCKTPKLIEKLQDLDVV
KVRCGSQFSIALTKDGQVYSWGKGDNQRLGHGTEEHVRYPKLLEGLQGKKVIDVAAGSTH
CLALTEDSEVHSWGSNDQCQHFDTLRVTKPEPAALPGLDTKHIVGIACGPAQSFAWSSCS
EWSIGLRVPFVVDICSMTFEQLDLLLRQVSEGMDGSADWPPPQEKECVAVATLNLLRLQL
HAAISHQVDPEFLGLGLGSILLNSLKQTVVTLASSAGVLSTVQSAAQAVLQSGWSVLLPT
AEERARALSALLPCAVSGNEVNISPGRRFMIDLLVGSLMADGGLESALHAAITAEIQDIE
AKKEAQKEKEIDEQEANASTFHRSRTPLDKDLINTGICESSGKQCLPLVQLIQQLLRNIA
SQTVARLKDVARRISSCLDFEQHSRERSASLDLLLRFQRLLISKLYPGESIGQTSDISSP
ELMGVGSLLKKYTALLCTHIGDILPVAASIASTSWRHFAEVAYIVEGDFTGVLLPELVVS
IVLLLSKNAGLMQEAGAVPLLGGLLEHLDRFNHLAPGKERDDHEELAWPGIMESFFTGQN
CRNNEEVTLIRKADLENHNKDGGFWTVIDGKVYDIKDFQTQSLTGNSILAQFAGEDPVVA
LEAALQFEDTRESMHAFCVGQYLEPDQEIVTIPDLGSLSSPLIDTERNLGLLLGLHASYL
AMSTPLSPVEIECAKWLQSSIFSGGLQTSQIHYSYNEEKDEDHCSSPGGTPASKSRLCSH
RRALGDHSQAFLQAIADNNIQDHNVKDFLCQIERYCRQCHLTTPIMFPPEHPVEEVGRLL
LCCLLKHEDLGHVALSLVHAGALGIEQVKHRTLPKSVVDVCRVVYQAKCSLIKTHQEQGR
SYKEVCAPVIERLRFLFNELRPAVCNDLSIMSKFKLLSSLPRWRRIAQKIIRERRKKRVP
KKPESTDDEEKIGNEESDLEEACILPHSPINVDKRPIAIKSPKDKWQPLLSTVTGVHKYK
WLKQNVQGLYPQSPLLSTIAEFALKEEPVDVEKMRKCLLKQLERAEVRLEGIDTILKLAS
KNFLLPSVQYAMFCGWQRLIPEGIDIGEPLTDCLKDVDLIPPFNRMLLEVTFGKLYAWAV
QNIRNVLMDASAKFKELGIQPVPLQTITNENPSGPSLGTIPQARFLLVMLSMLTLQHGAN
NLDLLLNSGMLALTQTALRLIGPSCDNVEEDMNASAQGASATVLEETRKETAPVQLPVSG
PELAAMMKIGTRVMRGVDWKWGDQDGPPPGLGRVIGELGEDGWIRVQWDTGSTNSYRMGK
EGKYDLKLAELPAAAQPSAEDSDTEDDSEAEQTERNIHPTAMMFTSTINLLQTLCLSAGV
HAEIMQSEATKTLCGLLRMLVESGTTDKTSSPNRLVYREQHRSWCTLGFVRSIALTPQVC
GALSSPQWITLLMKVVEGHAPFTATSLQRQILAVHLLQAVLPSWDKTERARDMKCLVEKL
FDFLGSLLTTCSSDVPLLRESTLRRRRVRPQASLTATHSSTLAEEVVALLRTLHSLTQWN
GLINKYINSQLRSITHSFVGRPSEGAQLEDYFPDSENPEVGGLMAVLAVIGGIDGRLRLG
GQVMHDEFGEGTVTRITPKGKITVQFSDMRTCRVCPLNQLKPLPAVAFNVNNLPFTEPML
SVWAQLVNLAGSKLEKHKIKKSTKQAFAGQVDLDLLRCQQLKLYILKAGRALLSHQDKLR
QILSQPAVQETGTVHTDDGAVVSPDLGDMSPEGPQPPMILLQQLLASATQPSPVKAIFDK
QELEAAALAVCQCLAVESTHPSSPGFEDCSSSEATTPVAVQHIRPARVKRRKQSPVPALP
IVVQLMEMGFSRRNIEFALKSLTGASGNASSLPGVEALVGWLLDHSDIQVTELSDADTVS
DEYSDEEVVEDVDDAAYSMSTGAVVTESQTYKKRADFLSNDDYAVYVRENIQVGMMVRCC
RAYEEVCEGDVGKVIKLDRDGLHDLNVQCDWQQKGGTYWVRYIHVELIGYPPPSSSSHIK
IGDKVRVKASVTTPKYKWGSVTHQSVGVVKAFSANGKDIIVDFPQQSHWTGLLSEMELVP
SIHPGVTCDGCQMFPINGSRFKCRNCDDFDFCETCFKTKKHNTRHTFGRINEPGQSAVFC
GRSGKQLKRCHSSQPGMLLDSWSRMVKSLNVSSSVNQASRLIDGSEPCWQSSGSQGKHWI
RLEIFPDVLVHRLKMIVDPADSSYMPSLVVVSGGNSLNNLIELKTININPSDTTVPLLND
CTEYHRYIEIAIKQCRSSGIDCKIHGLILLGRIRAEEEDLAAVPFLASDNEEEEDEKGNS
GSLIRKKAAGLESAATIRTKVFVWGLNDKDQLGGLKGSKIKVPSFSETLSALNVVQVAGG
SKSLFAVTVEGKVYACGEATNGRLGLGISSGTVPIPRQITALSSYVVKKVAVHSGGRHAT
ALTVDGKVFSWGEGDDGKLGHFSRMNCDKPRLIEALKTKRIRDIACGSSHSAALTSSGEL
YTWGLGEYGRLGHGDNTTQLKPKMVKVLLGHRVIQVACGSRDAQTLALTDEGLVFSWGDG
DFGKLGRGGSEGCNIPQNIERLNGQGVCQIECGAQFSLALTKSGVVWTWGKGDYFRLGHG
SDVHVRKPQVVEGLRGKKIVHVAVGALHCLAVTDSGQVYAWGDNDHGQQGNGTTTVNRKP
TLVQGLEGQKITRVACGSSHSVAWTTVDVATPSVHEPVLFQTARDPLGASYLGVPSDADS
SAASNKISGASNSKPNRPSLAKILLSLDGNLAKQQALSHILTALQIMYARDAVVGALMPA
AMIAPVECPSFSSAAPSDASAMASPMNGEECMLAVDIEDRLSPNPWQEKREIVSSEDAVT
PSAVTPSAPSASARPFIPVTDDLGAASIIAETMTKTKEDVESQNKAAGPEPQALDEFTSL
LIADDTRVVVDLLKLSVCSRAGDRGRDVLSAVLSGMGTAYPQVADMLLELCVTELEDVAT
DSQSGRLSSQPVVVESSHPYTDDTSTSGTVKIPGAEGLRVEFDRQCSTERRHDPLTVMDG
VNRIVSVRSGREWSDWSSELRIPGDELKWKFISDGSVNGWGWRFTVYPIMPAAGPKELLS
DRCVLSCPSMDLVTCLLDFRLNLASNRSIVPRLAASLAACAQLSALAASHRMWALQRLRK
LLTTEFGQSININRLLGENDGETRALSFTGSALAALVKGLPEALQRQFEYEDPIVRGGKQ
LLHSPFFKVLVALACDLELDTLPCCAETHKWAWFRRYCMASRVAVALDKRTPLPRLFLDE
VAKKIRELMADSENMDVLHESHDIFKREQDEQLVQWMNRRPDDWTLSAGGSGTIYGWGHN
HRGQLGGIEGAKVKVPTPCEALATLRPVQLIGGEQTLFAVTADGKLYATGYGAGGRLGIG
GTESVSTPTLLESIQHVFIKKVAVNSGGKHCLALSSEGEVYSWGEAEDGKLGHGNRSPCD
RPRVIESLRGIEVVDVAAGGAHSACVTAAGDLYTWGKGRYGRLGHSDSEDQLKPKLVEAL
QGHRVVDIACGSGDAQTLCLTDDDTVWSWGDGDYGKLGRGGSDGCKVPMKIDSLTGLGVV
KVECGSQFSVALTKSGAVYTWGKGDYHRLGHGSDDHVRRPRQVQGLQGKKVIAIATGSLH
CVCCTEDGEVYTWGDNDEGQLGDGTTNAIQRPRLVAALQGKKVNRVACGSAHTLAWSTSK
PASAGKLPAQVPMEYNHLQEIPIIALRNRLLLLHHLSELFCPCIPMFDLEGSLDETGLGP
SVGFDTLRGILISQGKEAAFRKVVQATMVRDRQHGPVVELNRIQVKRSRSKGGLAGPDGT
KSVFGQMCAKMSSFGPDSLLLPHRVWKVKFVGESVDDCGGGYSESIAEICEELQNGLTPL
LIVTPNGRDESGANRDCYLLSPAARAPVHSSMFRFLGVLLGIAIRTGSPLSLNLAEPVWK
QLAGMSLTIADLSEVDKDFIPGLMYIRDNEATSEEFEAMSLPFTVPSASGQDIQLSSKHT
HITLDNRAEYVRLAINYRLHEFDEQVAAVREGMARVVPVPLLSLFTGYELETMVCGSPDI
PLHLLKSVATYKGIEPSASLIQWFWEVMESFSNTERSLFLRFVWGRTRLPRTIADFRGRD
FVIQVLDKYNPPDHFLPESYTCFFLLKLPRYSCKQVLEEKLKYAIHFCKSIDTDDYARIA
LTGEPAADDSSDDSDNEDVDSFASDSTQDYLTGH
Function
E3 ubiquitin-protein ligase that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes. Recruited to sites of DNA damage in response to ionizing radiation (IR) and facilitates the assembly of UBE2N and RNF8 promoting DNA damage-induced formation of 'Lys-63'-linked ubiquitin chains. Acts as a mediator of binding specificity between UBE2N and RNF8. Involved in the maintenance of RNF168 levels. E3 ubiquitin-protein ligase that promotes the ubiquitination and proteasomal degradation of XPA which influences the circadian oscillation of DNA excision repair activity. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway. Modulates also iron metabolism by regulating the basal turnover of FBXL5.
KEGG Pathway
Ubiquitin mediated proteolysis (hsa04120 )
Reactome Pathway
Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks (R-HSA-5693565 )
Nonhomologous End-Joining (NHEJ) (R-HSA-5693571 )
Processing of DNA double-strand break ends (R-HSA-5693607 )
G2/M DNA damage checkpoint (R-HSA-69473 )
Antigen processing (R-HSA-983168 )
SUMOylation of DNA damage response and repair proteins (R-HSA-3108214 )

Molecular Interaction Atlas (MIA) of This DOT

40 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
T lymphoblastic leukaemia DIS2PNPP Definitive Genetic Variation [1]
Type-1 diabetes DIS7HLUB Definitive Genetic Variation [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Alzheimer disease DISF8S70 Strong Genetic Variation [4]
Autism spectrum disorder DISXK8NV Strong Genetic Variation [5]
Breast cancer DIS7DPX1 Strong Altered Expression [6]
Breast carcinoma DIS2UE88 Strong Altered Expression [6]
Colon cancer DISVC52G Strong Genetic Variation [7]
Colorectal adenocarcinoma DISPQOUB Strong Genetic Variation [7]
Colorectal cancer DISNH7P9 Strong Genetic Variation [7]
Colorectal cancer, susceptibility to, 1 DISZ794C Strong Genetic Variation [7]
Colorectal cancer, susceptibility to, 10 DISQXMYM Strong Genetic Variation [7]
Colorectal cancer, susceptibility to, 12 DIS4FXJX Strong Genetic Variation [7]
Colorectal carcinoma DIS5PYL0 Strong Genetic Variation [7]
Colorectal neoplasm DISR1UCN Strong Genetic Variation [7]
Crohn disease DIS2C5Q8 Strong Genetic Variation [2]
Developmental delay with autism spectrum disorder and gait instability DISGM81U Strong Autosomal recessive [8]
Intellectual disability DISMBNXP Strong Genetic Variation [9]
Melanoma DIS1RRCY Strong Genetic Variation [10]
Myopia DISK5S60 Strong Biomarker [11]
Neurodevelopmental disorder DIS372XH Strong Genetic Variation [9]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [12]
Ocular albinism DIS5IHK1 Strong Genetic Variation [13]
Oculocutaneous albinism DISJS7CU Strong Biomarker [14]
Oculocutaneous albinism type 2 DISMTYMP Strong Biomarker [15]
Pervasive developmental disorder DIS51975 Strong Genetic Variation [5]
Refractive error DISWNEQ1 Strong Biomarker [11]
Squamous cell carcinoma DISQVIFL Strong Genetic Variation [16]
Ulcerative colitis DIS8K27O Strong Genetic Variation [2]
Vitiligo DISR05SL Strong Genetic Variation [17]
Xeroderma pigmentosum DISQ9H19 Strong Genetic Variation [18]
Angelman syndrome DIS4QVXO moderate Genetic Variation [19]
Breast neoplasm DISNGJLM moderate CausalMutation [20]
Glaucoma/ocular hypertension DISLBXBY moderate Genetic Variation [21]
Neuroblastoma DISVZBI4 moderate Biomarker [22]
Asthma DISW9QNS Limited Genetic Variation [23]
Basal cell carcinoma DIS7PYN3 Limited Genetic Variation [24]
Basal cell neoplasm DIS37IXW Limited Genetic Variation [24]
Cutaneous squamous cell carcinoma DIS3LXUG Limited Genetic Variation [14]
Skin cancer DISTM18U Limited Genetic Variation [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
8 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [25]
Quercetin DM3NC4M Approved Quercetin increases the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [27]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [28]
Menadione DMSJDTY Approved Menadione affects the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [29]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [30]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [31]
Milchsaure DM462BT Investigative Milchsaure increases the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [33]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of E3 ubiquitin-protein ligase HERC2 (HERC2). [34]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 Drug(s)
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of E3 ubiquitin-protein ligase HERC2 (HERC2). [26]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of E3 ubiquitin-protein ligase HERC2 (HERC2). [32]
Coumarin DM0N8ZM Investigative Coumarin decreases the phosphorylation of E3 ubiquitin-protein ligase HERC2 (HERC2). [32]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of E3 ubiquitin-protein ligase HERC2 (HERC2). [35]
------------------------------------------------------------------------------------

References

1 SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia.Blood Cancer J. 2018 Jan 19;8(1):11. doi: 10.1038/s41408-017-0036-5.
2 Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects.Hum Mol Genet. 2010 May 15;19(10):2059-67. doi: 10.1093/hmg/ddq078. Epub 2010 Feb 22.
3 HERC2 Facilitates BLM and WRN Helicase Complex Interaction with RPA to Suppress G-Quadruplex DNA.Cancer Res. 2018 Nov 15;78(22):6371-6385. doi: 10.1158/0008-5472.CAN-18-1877. Epub 2018 Oct 2.
4 Family-based association analyses of imputed genotypes reveal genome-wide significant association of Alzheimer's disease with OSBPL6, PTPRG, and PDCL3.Mol Psychiatry. 2016 Nov;21(11):1608-1612. doi: 10.1038/mp.2015.218. Epub 2016 Feb 2.
5 A homozygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder. Hum Mutat. 2012 Dec;33(12):1639-46. doi: 10.1002/humu.22237.
6 Splice variants and expression patterns of SHEP1, BCAR3 and NSP1, a gene family involved in integrin and receptor tyrosine kinase signaling.Gene. 2007 Apr 15;391(1-2):161-70. doi: 10.1016/j.gene.2006.12.016. Epub 2007 Jan 8.
7 Bayesian and frequentist analysis of an Austrian genome-wide association study of colorectal cancer and advanced adenomas.Oncotarget. 2017 Oct 9;8(58):98623-98634. doi: 10.18632/oncotarget.21697. eCollection 2017 Nov 17.
8 Novel loss-of-function mutation in HERC2 is associated with severe developmental delay and paediatric lethality. J Med Genet. 2021 May;58(5):334-341. doi: 10.1136/jmedgenet-2020-106873. Epub 2020 Jun 22.
9 Proteomic investigations of human HERC2 mutants: Insights into the pathobiology of a neurodevelopmental disorder.Biochem Biophys Res Commun. 2019 Apr 30;512(2):421-427. doi: 10.1016/j.bbrc.2019.02.149. Epub 2019 Mar 19.
10 Natural and orthogonal model for estimating gene-gene interactions applied to cutaneous melanoma.Hum Genet. 2014 May;133(5):559-74. doi: 10.1007/s00439-013-1392-2. Epub 2013 Nov 17.
11 Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci.Hum Genet. 2018 Dec;137(11-12):881-896. doi: 10.1007/s00439-018-1942-8. Epub 2018 Oct 10.
12 Combinatory effect of BRCA1 and HERC2 expression on outcome in advanced non-small-cell lung cancer.BMC Cancer. 2016 May 14;16:312. doi: 10.1186/s12885-016-2339-5.
13 Genotype-phenotype associations and human eye color.J Hum Genet. 2011 Jan;56(1):5-7. doi: 10.1038/jhg.2010.126. Epub 2010 Oct 14.
14 Variants at the OCA2/HERC2 locus affect time to first cutaneous squamous cell carcinoma in solid organ transplant recipients collected using two different study designs.Br J Dermatol. 2017 Oct;177(4):1066-1073. doi: 10.1111/bjd.15618. Epub 2017 Sep 8.
15 Angelman syndrome and severe infections in a patient with de novo 15q11.2-q13.1 deletion and maternally inherited 2q21.3 microdeletion.Gene. 2013 Jan 10;512(2):453-5. doi: 10.1016/j.gene.2012.10.061. Epub 2012 Nov 1.
16 Identification of Susceptibility Loci for Cutaneous Squamous Cell Carcinoma.J Invest Dermatol. 2016 May;136(5):930-937. doi: 10.1016/j.jid.2016.01.013. Epub 2016 Jan 29.
17 Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants.Nat Genet. 2016 Nov;48(11):1418-1424. doi: 10.1038/ng.3680. Epub 2016 Oct 10.
18 Whole genome sequencing and 6-year follow-up of a mother and daughter with frontometaphyseal dysplasia associated with keratitis, xerosis, poikiloderma, and acro-osteolysis: A case report.Medicine (Baltimore). 2018 Jul;97(28):e11283. doi: 10.1097/MD.0000000000011283.
19 The HERC2 ubiquitin ligase is essential for embryonic development and regulates motor coordination.Oncotarget. 2016 Aug 30;7(35):56083-56106. doi: 10.18632/oncotarget.11270.
20 Activating HER2 mutations in HER2 gene amplification negative breast cancer.Cancer Discov. 2013 Feb;3(2):224-37. doi: 10.1158/2159-8290.CD-12-0349. Epub 2012 Dec 7.
21 Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies.Nat Genet. 2018 Sep;50(9):1335-1341. doi: 10.1038/s41588-018-0184-y. Epub 2018 Aug 13.
22 Role of p53 in the regulation of irradiation-induced apoptosis in neuroblastoma cells.Mol Genet Metab. 1998 Oct;65(2):155-64. doi: 10.1006/mgme.1998.2747.
23 Genome-Wide Association Study Identifies Novel Loci Associated With Diisocyanate-Induced Occupational Asthma.Toxicol Sci. 2015 Jul;146(1):192-201. doi: 10.1093/toxsci/kfv084. Epub 2015 Apr 26.
24 Combined analysis of keratinocyte cancers identifies novel genome-wide loci.Hum Mol Genet. 2019 Sep 15;28(18):3148-3160. doi: 10.1093/hmg/ddz121.
25 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
26 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
27 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
28 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
29 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
30 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
31 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
32 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
33 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
34 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
35 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.