General Information of Drug Off-Target (DOT) (ID: OTQUY6BV)

DOT Name Tight junction protein ZO-2 (TJP2)
Synonyms Tight junction protein 2; Zona occludens protein 2; Zonula occludens protein 2
Gene Name TJP2
Related Disease
Carcinoma ( )
Cholestasis ( )
Cholestasis, progressive familial intrahepatic, 4 ( )
Colorectal carcinoma ( )
Ductal carcinoma ( )
Friedreich ataxia 1 ( )
Friedreich's ataxia ( )
Hepatobiliary disorder ( )
Hypercholesterolemia, familial, 1 ( )
Intrahepatic cholestasis ( )
Intrahepatic cholestasis of pregnancy ( )
Neoplasm ( )
Pancreatic adenocarcinoma ( )
Refractive error ( )
Tuberculosis ( )
leukaemia ( )
Leukemia ( )
Autosomal dominant nonsyndromic hearing loss ( )
Obsolete familial hypercholanemia ( )
High blood pressure ( )
Deafness ( )
Hypercholanemia, familial ( )
Hypercholanemia, familial 1 ( )
Myopia ( )
Non-insulin dependent diabetes ( )
Nonsyndromic genetic hearing loss ( )
Progressive familial intrahepatic cholestasis ( )
Progressive familial intrahepatic cholestasis type 1 ( )
UniProt ID
ZO2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2OSG; 3E17
Pfam ID
PF00625 ; PF00595 ; PF07653
Sequence
MPVRGDRGFPPRRELSGWLRAPGMEELIWEQYTVTLQKDSKRGFGIAVSGGRDNPHFENG
ETSIVISDVLPGGPADGLLQENDRVVMVNGTPMEDVLHSFAVQQLRKSGKVAAIVVKRPR
KVQVAALQASPPLDQDDRAFEVMDEFDGRSFRSGYSERSRLNSHGGRSRSWEDSPERGRP
HERARSRERDLSRDRSRGRSLERGLDQDHARTRDRSRGRSLERGLDHDFGPSRDRDRDRS
RGRSIDQDYERAYHRAYDPDYERAYSPEYRRGARHDARSRGPRSRSREHPHSRSPSPEPR
GRPGPIGVLLMKSRANEEYGLRLGSQIFVKEMTRTGLATKDGNLHEGDIILKINGTVTEN
MSLTDARKLIEKSRGKLQLVVLRDSQQTLINIPSLNDSDSEIEDISEIESNRSFSPEERR
HQYSDYDYHSSSEKLKERPSSREDTPSRLSRMGATPTPFKSTGDIAGTVVPETNKEPRYQ
EDPPAPQPKAAPRTFLRPSPEDEAIYGPNTKMVRFKKGDSVGLRLAGGNDVGIFVAGIQE
GTSAEQEGLQEGDQILKVNTQDFRGLVREDAVLYLLEIPKGEMVTILAQSRADVYRDILA
CGRGDSFFIRSHFECEKETPQSLAFTRGEVFRVVDTLYDGKLGNWLAVRIGNELEKGLIP
NKSRAEQMASVQNAQRDNAGDRADFWRMRGQRSGVKKNLRKSREDLTAVVSVSTKFPAYE
RVLLREAGFKRPVVLFGPIADIAMEKLANELPDWFQTAKTEPKDAGSEKSTGVVRLNTVR
QIIEQDKHALLDVTPKAVDLLNYTQWFPIVIFFNPDSRQGVKTMRQRLNPTSNKSSRKLF
DQANKLKKTCAHLFTATINLNSANDSWFGSLKDTIQHQQGEAVWVSEGKMEGMDDDPEDR
MSYLTAMGADYLSCDSRLISDFEDTDGEGGAYTDNELDEPAEEPLVSSITRSSEPVQHEE
SIRKPSPEPRAQMRRAASSDQLRDNSPPPAFKPEPPKAKTQNKEESYDFSKSYEYKSNPS
AVAGNETPGASTKGYPPPVAAKPTFGRSILKPSTPIPPQEGEEVGESSEEQDNAPKSVLG
KVKIFEKMDHKARLQRMQELQEAQNARIEIAQKHPDIYAVPIKTHKPDPGTPQHTSSRPP
EPQKAPSRPYQDTRGSYGSDAEEEEYRQQLSEHSKRGYYGQSARYRDTEL
Function Plays a role in tight junctions and adherens junctions. Acts as a positive regulator of RANKL-induced osteoclast differentiation, potentially via mediating downstream transcriptional activity.
Tissue Specificity
This protein is found in epithelial cell junctions. Isoform A1 is abundant in the heart and brain. Detected in brain and skeletal muscle. It is present almost exclusively in normal tissues. Isoform C1 is expressed at high level in the kidney, pancreas, heart and placenta. Not detected in brain and skeletal muscle. Found in normal as well as in most neoplastic tissues.
KEGG Pathway
Tight junction (hsa04530 )
Vibrio cholerae infection (hsa05110 )
Reactome Pathway
Apoptotic cleavage of cell adhesion proteins (R-HSA-351906 )
RHOA GTPase cycle (R-HSA-8980692 )
RHOB GTPase cycle (R-HSA-9013026 )
RHOC GTPase cycle (R-HSA-9013106 )
Signaling by Hippo (R-HSA-2028269 )

Molecular Interaction Atlas (MIA) of This DOT

28 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Carcinoma DISH9F1N Strong Altered Expression [1]
Cholestasis DISDJJWE Strong Genetic Variation [2]
Cholestasis, progressive familial intrahepatic, 4 DISEUKLI Strong Autosomal recessive [3]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [4]
Ductal carcinoma DIS15EA5 Strong Altered Expression [1]
Friedreich ataxia 1 DIS285GE Strong Genetic Variation [5]
Friedreich's ataxia DIS5DV35 Strong Genetic Variation [5]
Hepatobiliary disorder DISEW817 Strong Biomarker [6]
Hypercholesterolemia, familial, 1 DISU411W Strong Genetic Variation [7]
Intrahepatic cholestasis DISHITDZ Strong Genetic Variation [6]
Intrahepatic cholestasis of pregnancy DISMHS5F Strong Biomarker [8]
Neoplasm DISZKGEW Strong Altered Expression [4]
Pancreatic adenocarcinoma DISKHX7S Strong Altered Expression [9]
Refractive error DISWNEQ1 Strong Genetic Variation [10]
Tuberculosis DIS2YIMD Strong Biomarker [11]
leukaemia DISS7D1V moderate Biomarker [12]
Leukemia DISNAKFL moderate Biomarker [12]
Autosomal dominant nonsyndromic hearing loss DISYC1G0 Supportive Autosomal dominant [13]
Obsolete familial hypercholanemia DISMGYNC Supportive Autosomal recessive [7]
High blood pressure DISY2OHH Disputed Biomarker [14]
Deafness DISKCLH4 Limited Biomarker [15]
Hypercholanemia, familial DIS3MHVP Limited Biomarker [15]
Hypercholanemia, familial 1 DISHF4Z3 Limited Unknown [7]
Myopia DISK5S60 Limited Genetic Variation [16]
Non-insulin dependent diabetes DISK1O5Z Limited Biomarker [17]
Nonsyndromic genetic hearing loss DISZX61P Limited Autosomal dominant [18]
Progressive familial intrahepatic cholestasis DIS3J8HT Limited Genetic Variation [19]
Progressive familial intrahepatic cholestasis type 1 DISU0AJE Limited Genetic Variation [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Tight junction protein ZO-2 (TJP2). [20]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tight junction protein ZO-2 (TJP2). [21]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Tight junction protein ZO-2 (TJP2). [22]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tight junction protein ZO-2 (TJP2). [23]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Tight junction protein ZO-2 (TJP2). [24]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Tight junction protein ZO-2 (TJP2). [25]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Tight junction protein ZO-2 (TJP2). [26]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Tight junction protein ZO-2 (TJP2). [27]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Tight junction protein ZO-2 (TJP2). [28]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Tight junction protein ZO-2 (TJP2). [29]
Triclosan DMZUR4N Approved Triclosan increases the expression of Tight junction protein ZO-2 (TJP2). [30]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Tight junction protein ZO-2 (TJP2). [31]
Menadione DMSJDTY Approved Menadione affects the expression of Tight junction protein ZO-2 (TJP2). [32]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Tight junction protein ZO-2 (TJP2). [33]
Hydroquinone DM6AVR4 Approved Hydroquinone decreases the expression of Tight junction protein ZO-2 (TJP2). [34]
Piroxicam DMTK234 Approved Piroxicam increases the expression of Tight junction protein ZO-2 (TJP2). [35]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Tight junction protein ZO-2 (TJP2). [37]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Tight junction protein ZO-2 (TJP2). [39]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Tight junction protein ZO-2 (TJP2). [40]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Tight junction protein ZO-2 (TJP2). [41]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Tight junction protein ZO-2 (TJP2). [42]
Okadaic acid DM47CO1 Investigative Okadaic acid increases the expression of Tight junction protein ZO-2 (TJP2). [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Tight junction protein ZO-2 (TJP2). [36]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Tight junction protein ZO-2 (TJP2). [38]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Tight junction protein ZO-2 (TJP2). [38]
------------------------------------------------------------------------------------

References

1 zo-2 gene alternative promoters in normal and neoplastic human pancreatic duct cells.Int J Cancer. 1999 Oct 29;83(3):349-58. doi: 10.1002/(sici)1097-0215(19991029)83:3<349::aid-ijc10>3.0.co;2-c.
2 Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet Med. 2019 May;21(5):1164-1172. doi: 10.1038/s41436-018-0288-x. Epub 2018 Sep 25.
3 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
4 Alu-related transcript of TJP2 gene as a marker for colorectal cancer.Gene. 2013 Jul 25;524(2):268-74. doi: 10.1016/j.gene.2013.04.006. Epub 2013 Apr 20.
5 The Friedreich ataxia critical region spans a 150-kb interval on chromosome 9q13.Am J Hum Genet. 1995 Nov;57(5):1061-7.
6 TJP2 hepatobiliary disorders: Novel variants and clinical diversity.Hum Mutat. 2020 Feb;41(2):502-511. doi: 10.1002/humu.23947. Epub 2019 Nov 28.
7 Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003 May;34(1):91-6. doi: 10.1038/ng1147.
8 An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy.Sci Rep. 2017 Sep 18;7(1):11823. doi: 10.1038/s41598-017-11626-x.
9 Tight junction protein ZO-2 is differentially expressed in normal pancreatic ducts compared to human pancreatic adenocarcinoma.Int J Cancer. 1999 Jul 2;82(1):137-44. doi: 10.1002/(sici)1097-0215(19990702)82:1<137::aid-ijc23>3.0.co;2-f.
10 Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia.Nat Genet. 2013 Mar;45(3):314-8. doi: 10.1038/ng.2554. Epub 2013 Feb 10.
11 Dual color fluorescence in situ hybridization (FISH) assays for detecting Mycobacterium tuberculosis and Mycobacterium avium complexes and related pathogens in cultures.PLoS One. 2017 Apr 11;12(4):e0174989. doi: 10.1371/journal.pone.0174989. eCollection 2017.
12 Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia.PLoS One. 2016 Oct 20;11(10):e0165210. doi: 10.1371/journal.pone.0165210. eCollection 2016.
13 Genetic Hearing Loss Overview. 1999 Feb 14 [updated 2023 Sep 28]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
14 Comparative changes in the blood-brain barrier and cerebral infarction of SHR and WKY rats.Am J Physiol Regul Integr Comp Physiol. 2007 May;292(5):R1881-92. doi: 10.1152/ajpregu.00761.2005. Epub 2007 Jan 18.
15 Genetic analysis of genes related to tight junction function in the Korean population with non-syndromic hearing loss.PLoS One. 2014 Apr 21;9(4):e95646. doi: 10.1371/journal.pone.0095646. eCollection 2014.
16 Detection and interpretation of shared genetic influences on 42 human traits.Nat Genet. 2016 Jul;48(7):709-17. doi: 10.1038/ng.3570. Epub 2016 May 16.
17 HNF1 defect influences post-prandial lipid regulation.PLoS One. 2017 May 11;12(5):e0177110. doi: 10.1371/journal.pone.0177110. eCollection 2017.
18 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
19 Novel compound heterozygote mutations of TJP2 in a Chinese child with progressive cholestatic liver disease.BMC Med Genet. 2019 Jan 18;20(1):18. doi: 10.1186/s12881-019-0753-7.
20 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
21 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
22 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
23 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
24 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
25 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
26 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
27 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
28 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
29 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
30 Primary Human Hepatocyte Spheroids as Tools to Study the Hepatotoxic Potential of Non-Pharmaceutical Chemicals. Int J Mol Sci. 2021 Oct 12;22(20):11005. doi: 10.3390/ijms222011005.
31 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
32 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
33 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
34 PARP?1 may be involved in hydroquinone?induced apoptosis by poly ADP?ribosylation of ZO?2. Mol Med Rep. 2017 Dec;16(6):8076-8084. doi: 10.3892/mmr.2017.7643. Epub 2017 Sep 27.
35 Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569.
36 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
37 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
38 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
39 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
40 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
41 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
42 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
43 The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells. Toxicol In Vitro. 2019 Aug;58:150-160. doi: 10.1016/j.tiv.2019.03.033. Epub 2019 Mar 26.