General Information of Drug Off-Target (DOT) (ID: OT0GTBXO)

DOT Name Tumor protein p53-inducible nuclear protein 2 (TP53INP2)
Synonyms Diabetes and obesity-regulated gene; p53-inducible protein U; PIG-U
Gene Name TP53INP2
Related Disease
Adenoma ( )
Adult lymphoma ( )
Advanced cancer ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Carcinoma ( )
Cerebellar ataxia ( )
Constipation ( )
Fibromyalgia ( )
Head-neck squamous cell carcinoma ( )
Lymphoma ( )
Nephropathy ( )
Pediatric lymphoma ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Colorectal carcinoma ( )
Liposarcoma ( )
Melanoma ( )
UniProt ID
T53I2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7YO9
Pfam ID
PF14839
Sequence
MFQRLSSLFFSTPSPPEDPDCPRAFVSEEDEVDGWLIIDLPDSYAAPPSPGAAPAPAGRP
PPAPSLMDESWFVTPPACFTAEGPGLGPARLQSSPLEDLLIEHPSMSVYVTGSTIVLEPG
SPSPLPDAALPDGDLSEGELTPARREPRAARHAAPLPARAALLEKAGQVRRLQRARQRAE
RHALSAKAVQRQNRARESRPRRSKNQSSFIYQPCQRQFNY
Function
Dual regulator of transcription and autophagy. Positively regulates autophagy and is required for autophagosome formation and processing. May act as a scaffold protein that recruits MAP1LC3A, GABARAP and GABARAPL2 and brings them to the autophagosome membrane by interacting with VMP1 where, in cooperation with the BECN1-PI3-kinase class III complex, they trigger autophagosome development. Acts as a transcriptional activator of THRA.
KEGG Pathway
Autophagy - animal (hsa04140 )

Molecular Interaction Atlas (MIA) of This DOT

19 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adenoma DIS78ZEV Strong Biomarker [1]
Adult lymphoma DISK8IZR Strong Altered Expression [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Bladder cancer DISUHNM0 Strong Biomarker [4]
Breast cancer DIS7DPX1 Strong Biomarker [2]
Breast carcinoma DIS2UE88 Strong Biomarker [2]
Carcinoma DISH9F1N Strong Altered Expression [5]
Cerebellar ataxia DIS9IRAV Strong Genetic Variation [6]
Constipation DISRQXWI Strong Biomarker [7]
Fibromyalgia DISZJDS2 Strong Altered Expression [8]
Head-neck squamous cell carcinoma DISF7P24 Strong Biomarker [9]
Lymphoma DISN6V4S Strong Altered Expression [2]
Nephropathy DISXWP4P Strong Altered Expression [10]
Pediatric lymphoma DIS51BK2 Strong Altered Expression [2]
Urinary bladder cancer DISDV4T7 Strong Biomarker [4]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [4]
Colorectal carcinoma DIS5PYL0 moderate Biomarker [11]
Liposarcoma DIS8IZVM moderate Altered Expression [12]
Melanoma DIS1RRCY Limited Altered Expression [13]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [14]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [15]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [16]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [15]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [17]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [18]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [19]
Testosterone DM7HUNW Approved Testosterone increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [19]
Marinol DM70IK5 Approved Marinol increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [20]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [21]
Cocaine DMSOX7I Approved Cocaine decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [22]
Capsaicin DMGMF6V Approved Capsaicin increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [23]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [24]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [27]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [28]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [29]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde decreases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [30]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [31]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Tumor protein p53-inducible nuclear protein 2 (TP53INP2). [25]
------------------------------------------------------------------------------------

References

1 The importance of stool DNA methylation in colorectal cancer diagnosis: A meta-analysis.PLoS One. 2018 Jul 19;13(7):e0200735. doi: 10.1371/journal.pone.0200735. eCollection 2018.
2 Profiling the expression pattern of GPI transamidase complex subunits in human cancer.Mod Pathol. 2008 Aug;21(8):979-91. doi: 10.1038/modpathol.2008.76. Epub 2008 May 16.
3 Regulation of death receptor signaling by the autophagy protein TP53INP2.EMBO J. 2019 May 15;38(10):e99300. doi: 10.15252/embj.201899300. Epub 2019 Apr 12.
4 GPI transamidase and GPI anchored proteins: oncogenes and biomarkers for cancer.Crit Rev Biochem Mol Biol. 2013 Sep-Oct;48(5):446-64. doi: 10.3109/10409238.2013.831024. Epub 2013 Aug 27.
5 CDC91L1 (PIG-U) mRNA expression in urothelial cell carcinomas.Int J Cancer. 2005 Aug 20;116(2):282-4. doi: 10.1002/ijc.21040.
6 The coding region of TP53INP2, a gene expressed in the developing nervous system, is not altered in a family with autosomal recessive non-progressive infantile ataxia on chromosome 20q11-q13.Dev Dyn. 2007 Mar;236(3):843-52. doi: 10.1002/dvdy.21064.
7 Pharmacological profile of TAN-452, a novel peripherally acting opioid receptor antagonist for the treatment of opioid-induced bowel syndromes.Life Sci. 2018 Dec 15;215:246-252. doi: 10.1016/j.lfs.2018.07.028. Epub 2018 Jul 21.
8 Skin cytokine expression in patients with fibromyalgia syndrome is not different from controls.BMC Neurol. 2014 Sep 22;14:185. doi: 10.1186/s12883-014-0185-0.
9 Alterations of GPI transamidase subunits in head and neck squamous carcinoma.Mol Cancer. 2007 Nov 21;6:74. doi: 10.1186/1476-4598-6-74.
10 Cellular and viral miRNA expression in polyomavirus BK infection.Transpl Infect Dis. 2019 Oct;21(5):e13159. doi: 10.1111/tid.13159. Epub 2019 Aug 29.
11 A systematic review and quantitative assessment of methylation biomarkers in fecal DNA and colorectal cancer and its precursor, colorectal adenoma.Mutat Res Rev Mutat Res. 2019 Jan-Mar;779:45-57. doi: 10.1016/j.mrrev.2019.01.003. Epub 2019 Jan 16.
12 TP53INP2-related basal autophagy is involved in the growth and malignant progression in human liposarcoma cells.Biomed Pharmacother. 2017 Apr;88:562-568. doi: 10.1016/j.biopha.2017.01.110. Epub 2017 Feb 24.
13 miR-638 promotes melanoma metastasis and protects melanoma cells from apoptosis and autophagy.Oncotarget. 2015 Feb 20;6(5):2966-80. doi: 10.18632/oncotarget.3070.
14 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
15 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
16 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
17 Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women. Arch Toxicol. 2017 May;91(5):2067-2078. doi: 10.1007/s00204-016-1879-4. Epub 2016 Nov 12.
18 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
19 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
20 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
21 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
22 Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem. 2004 Mar;88(5):1211-9. doi: 10.1046/j.1471-4159.2003.02247.x.
23 Capsaicin inhibits the migration, invasion and EMT of renal cancer cells by inducing AMPK/mTOR-mediated autophagy. Chem Biol Interact. 2022 Oct 1;366:110043. doi: 10.1016/j.cbi.2022.110043. Epub 2022 Aug 28.
24 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
25 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
26 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
27 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
28 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
29 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
30 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
31 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.