General Information of Drug Off-Target (DOT) (ID: OT3AMK0C)

DOT Name Ephrin type-A receptor 4 (EPHA4)
Synonyms EC 2.7.10.1; EPH-like kinase 8; EK8; hEK8; Tyrosine-protein kinase TYRO1; Tyrosine-protein kinase receptor SEK
Gene Name EPHA4
Related Disease
Complex neurodevelopmental disorder ( )
UniProt ID
EPHA4_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LW8; 2WO1; 2WO2; 2WO3; 3CKH; 3GXU; 4BK4; 4BK5; 4BKA; 4BKF; 4M4P; 4M4R; 4W4Z; 4W50; 5JR2; 7OFV
EC Number
2.7.10.1
Pfam ID
PF14575 ; PF01404 ; PF07699 ; PF00041 ; PF07714 ; PF07647
Sequence
MAGIFYFALFSCLFGICDAVTGSRVYPANEVTLLDSRSVQGELGWIASPLEGGWEEVSIM
DEKNTPIRTYQVCNVMEPSQNNWLRTDWITREGAQRVYIEIKFTLRDCNSLPGVMGTCKE
TFNLYYYESDNDKERFIRENQFVKIDTIAADESFTQVDIGDRIMKLNTEIRDVGPLSKKG
FYLAFQDVGACIALVSVRVFYKKCPLTVRNLAQFPDTITGADTSSLVEVRGSCVNNSEEK
DVPKMYCGADGEWLVPIGNCLCNAGHEERSGECQACKIGYYKALSTDATCAKCPPHSYSV
WEGATSCTCDRGFFRADNDAASMPCTRPPSAPLNLISNVNETSVNLEWSSPQNTGGRQDI
SYNVVCKKCGAGDPSKCRPCGSGVHYTPQQNGLKTTKVSITDLLAHTNYTFEIWAVNGVS
KYNPNPDQSVSVTVTTNQAAPSSIALVQAKEVTRYSVALAWLEPDRPNGVILEYEVKYYE
KDQNERSYRIVRTAARNTDIKGLNPLTSYVFHVRARTAAGYGDFSEPLEVTTNTVPSRII
GDGANSTVLLVSVSGSVVLVVILIAAFVISRRRSKYSKAKQEADEEKHLNQGVRTYVDPF
TYEDPNQAVREFAKEIDASCIKIEKVIGVGEFGEVCSGRLKVPGKREICVAIKTLKAGYT
DKQRRDFLSEASIMGQFDHPNIIHLEGVVTKCKPVMIITEYMENGSLDAFLRKNDGRFTV
IQLVGMLRGIGSGMKYLSDMSYVHRDLAARNILVNSNLVCKVSDFGMSRVLEDDPEAAYT
TRGGKIPIRWTAPEAIAYRKFTSASDVWSYGIVMWEVMSYGERPYWDMSNQDVIKAIEEG
YRLPPPMDCPIALHQLMLDCWQKERSDRPKFGQIVNMLDKLIRNPNSLKRTGTESSRPNT
ALLDPSSPEFSAVVSVGDWLQAIKMDRYKDNFTAAGYTTLEAVVHVNQEDLARIGITAIT
HQNKILSSVQAMRTQMQQMHGRMVPV
Function
Receptor tyrosine kinase which binds membrane-bound ephrin family ligands residing on adjacent cells, leading to contact-dependent bidirectional signaling into neighboring cells. The signaling pathway downstream of the receptor is referred to as forward signaling while the signaling pathway downstream of the ephrin ligand is referred to as reverse signaling. Highly promiscuous, it has the unique property among Eph receptors to bind and to be physiologically activated by both GPI-anchored ephrin-A and transmembrane ephrin-B ligands including EFNA1 and EFNB3. Upon activation by ephrin ligands, modulates cell morphology and integrin-dependent cell adhesion through regulation of the Rac, Rap and Rho GTPases activity. Plays an important role in the development of the nervous system controlling different steps of axonal guidance including the establishment of the corticospinal projections. May also control the segregation of motor and sensory axons during neuromuscular circuit development. In addition to its role in axonal guidance plays a role in synaptic plasticity. Activated by EFNA1 phosphorylates CDK5 at 'Tyr-15' which in turn phosphorylates NGEF regulating RHOA and dendritic spine morphogenesis. In the nervous system, also plays a role in repair after injury preventing axonal regeneration and in angiogenesis playing a role in central nervous system vascular formation. Additionally, its promiscuity makes it available to participate in a variety of cell-cell signaling regulating for instance the development of the thymic epithelium. During development of the cochlear organ of Corti, regulates pillar cell separation by forming a ternary complex with ADAM10 and CADH1 which facilitates the cleavage of CADH1 by ADAM10 and disruption of adherens junctions. Phosphorylates CAPRIN1, promoting CAPRIN1-dependent formation of a membraneless compartment.
Tissue Specificity Ubiquitous.
KEGG Pathway
Axon guidance (hsa04360 )
Reactome Pathway
EPHA-mediated growth cone collapse (R-HSA-3928663 )
EPH-ephrin mediated repulsion of cells (R-HSA-3928665 )
Somitogenesis (R-HSA-9824272 )
EPH-Ephrin signaling (R-HSA-2682334 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Complex neurodevelopmental disorder DISB9AFI Disputed Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Brilinta DMBR01X Approved Ephrin type-A receptor 4 (EPHA4) increases the Peripheral sensory neuropathy ADR of Brilinta. [23]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Ephrin type-A receptor 4 (EPHA4). [2]
Epinephrine DM3KJBC Approved Epinephrine increases the phosphorylation of Ephrin type-A receptor 4 (EPHA4). [14]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Ephrin type-A receptor 4 (EPHA4). [16]
adenosine diphosphate DMFUHKP Investigative adenosine diphosphate increases the phosphorylation of Ephrin type-A receptor 4 (EPHA4). [14]
------------------------------------------------------------------------------------
25 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Ephrin type-A receptor 4 (EPHA4). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Ephrin type-A receptor 4 (EPHA4). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Ephrin type-A receptor 4 (EPHA4). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Ephrin type-A receptor 4 (EPHA4). [6]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Ephrin type-A receptor 4 (EPHA4). [7]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Ephrin type-A receptor 4 (EPHA4). [8]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Ephrin type-A receptor 4 (EPHA4). [9]
Marinol DM70IK5 Approved Marinol decreases the expression of Ephrin type-A receptor 4 (EPHA4). [10]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Ephrin type-A receptor 4 (EPHA4). [11]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Ephrin type-A receptor 4 (EPHA4). [8]
Fulvestrant DM0YZC6 Approved Fulvestrant increases the expression of Ephrin type-A receptor 4 (EPHA4). [12]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Ephrin type-A receptor 4 (EPHA4). [12]
Malathion DMXZ84M Approved Malathion increases the expression of Ephrin type-A receptor 4 (EPHA4). [13]
Estrone DM5T6US Approved Estrone decreases the expression of Ephrin type-A receptor 4 (EPHA4). [12]
Mestranol DMG3F94 Approved Mestranol decreases the expression of Ephrin type-A receptor 4 (EPHA4). [12]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Ephrin type-A receptor 4 (EPHA4). [8]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Ephrin type-A receptor 4 (EPHA4). [15]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Ephrin type-A receptor 4 (EPHA4). [12]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Ephrin type-A receptor 4 (EPHA4). [17]
PMID25656651-Compound-5 DMAI95U Patented PMID25656651-Compound-5 decreases the activity of Ephrin type-A receptor 4 (EPHA4). [18]
HEXESTROL DM9AGWQ Withdrawn from market HEXESTROL decreases the expression of Ephrin type-A receptor 4 (EPHA4). [12]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Ephrin type-A receptor 4 (EPHA4). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Ephrin type-A receptor 4 (EPHA4). [20]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Ephrin type-A receptor 4 (EPHA4). [21]
KOJIC ACID DMP84CS Investigative KOJIC ACID increases the expression of Ephrin type-A receptor 4 (EPHA4). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 25 Drug(s)

References

1 DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet. 2009 Apr;84(4):524-33. doi: 10.1016/j.ajhg.2009.03.010. Epub 2009 Apr 2.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor alpha signalling and results in tamoxifen insensitive proliferation. BMC Cancer. 2014 Apr 23;14:283.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
9 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
10 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
11 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
12 Moving toward integrating gene expression profiling into high-throughput testing: a gene expression biomarker accurately predicts estrogen receptor alpha modulation in a microarray compendium. Toxicol Sci. 2016 May;151(1):88-103.
13 Malathion induced cancer-linked gene expression in human lymphocytes. Environ Res. 2020 Mar;182:109131. doi: 10.1016/j.envres.2020.109131. Epub 2020 Jan 10.
14 The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets. 2012;23(8):617-25. doi: 10.3109/09537104.2011.645924. Epub 2012 Jan 24.
15 Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer. 2003 Mar 20;104(2):204-12.
16 Effect of aflatoxin B(1), benzo[a]pyrene, and methapyrilene on transcriptomic and epigenetic alterations in human liver HepaRG cells. Food Chem Toxicol. 2018 Nov;121:214-223. doi: 10.1016/j.fct.2018.08.034. Epub 2018 Aug 26.
17 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
18 AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009 Nov 6;16(5):401-12. doi: 10.1016/j.ccr.2009.09.028.
19 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
20 Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food Chem Toxicol. 2017 Oct;108(Pt A):30-42.
21 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
22 Toxicogenomics of kojic acid on gene expression profiling of a375 human malignant melanoma cells. Biol Pharm Bull. 2006 Apr;29(4):655-69.
23 Genome-wide association study identifies ephrin type A receptors implicated in paclitaxel induced peripheral sensory neuropathy. J Med Genet. 2013 Sep;50(9):599-605. doi: 10.1136/jmedgenet-2012-101466. Epub 2013 Jun 17.