General Information of Drug Off-Target (DOT) (ID: OT3N88Q1)

DOT Name Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2)
Synonyms Leucine-rich repeat neuronal protein 3; Leucine-rich repeat neuronal protein 6C
Gene Name LINGO2
Related Disease
Autism ( )
Colitis ( )
Essential tremor ( )
Helminth infection ( )
Liver cancer ( )
Non-insulin dependent diabetes ( )
Obesity ( )
Parkinson disease ( )
Acute myelogenous leukaemia ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Esophageal squamous cell carcinoma ( )
Gastric cancer ( )
Lung cancer ( )
Lung carcinoma ( )
Megalencephaly ( )
Stomach cancer ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
UniProt ID
LIGO2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF07679 ; PF00560 ; PF13855
Sequence
MLHTAISCWQPFLGLAVVLIFMGSTIGCPARCECSAQNKSVSCHRRRLIAIPEGIPIETK
ILDLSKNRLKSVNPEEFISYPLLEEIDLSDNIIANVEPGAFNNLFNLRSLRLKGNRLKLV
PLGVFTGLSNLTKLDISENKIVILLDYMFQDLHNLKSLEVGDNDLVYISHRAFSGLLSLE
QLTLEKCNLTAVPTEALSHLRSLISLHLKHLNINNMPVYAFKRLFHLKHLEIDYWPLLDM
MPANSLYGLNLTSLSVTNTNLSTVPFLAFKHLVYLTHLNLSYNPISTIEAGMFSDLIRLQ
ELHIVGAQLRTIEPHSFQGLRFLRVLNVSQNLLETLEENVFSSPRALEVLSINNNPLACD
CRLLWILQRQPTLQFGGQQPMCAGPDTIRERSFKDFHSTALSFYFTCKKPKIREKKLQHL
LVDEGQTVQLECSADGDPQPVISWVTPRRRFITTKSNGRATVLGDGTLEIRFAQDQDSGM
YVCIASNAAGNDTFTASLTVKGFASDRFLYANRTPMYMTDSNDTISNGTNANTFSLDLKT
ILVSTAMGCFTFLGVVLFCFLLLFVWSRGKGKHKNSIDLEYVPRKNNGAVVEGEVAGPRR
FNMKMI

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Autism DISV4V1Z Strong Genetic Variation [1]
Colitis DISAF7DD Strong Altered Expression [2]
Essential tremor DIS7GBKQ Strong Biomarker [3]
Helminth infection DIS7CGKY Strong Biomarker [2]
Liver cancer DISDE4BI Strong Biomarker [4]
Non-insulin dependent diabetes DISK1O5Z Strong Genetic Variation [5]
Obesity DIS47Y1K Strong Genetic Variation [5]
Parkinson disease DISQVHKL Strong Genetic Variation [6]
Acute myelogenous leukaemia DISCSPTN moderate Genetic Variation [7]
Bladder cancer DISUHNM0 Limited Genetic Variation [8]
Breast cancer DIS7DPX1 Limited Genetic Variation [8]
Breast carcinoma DIS2UE88 Limited Genetic Variation [8]
Esophageal squamous cell carcinoma DIS5N2GV Limited Genetic Variation [8]
Gastric cancer DISXGOUK Limited Genetic Variation [8]
Lung cancer DISCM4YA Limited Genetic Variation [8]
Lung carcinoma DISTR26C Limited Genetic Variation [8]
Megalencephaly DISYW5SV Limited Genetic Variation [9]
Stomach cancer DISKIJSX Limited Genetic Variation [8]
Urinary bladder cancer DISDV4T7 Limited Genetic Variation [8]
Urinary bladder neoplasm DIS7HACE Limited Genetic Variation [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Methamphetamine DMPM4SK Approved Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2) affects the response to substance of Methamphetamine. [17]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the methylation of Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2). [15]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2). [11]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2). [12]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2). [13]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2 (LINGO2). [16]
------------------------------------------------------------------------------------

References

1 Modeling prior information of common genetic variants improves gene discovery for neuroticism.Hum Mol Genet. 2017 Nov 15;26(22):4530-4539. doi: 10.1093/hmg/ddx340.
2 TFF3 interacts with LINGO2 to regulate EGFR activation for protection against colitis and gastrointestinal helminths.Nat Commun. 2019 Sep 27;10(1):4408. doi: 10.1038/s41467-019-12315-1.
3 Increased LINGO1 in the cerebellum of essential tremor patients.Mov Disord. 2014 Nov;29(13):1637-47. doi: 10.1002/mds.25819. Epub 2014 Feb 14.
4 Multiple genes exhibit phenobarbital-induced constitutive active/androstane receptor-mediated DNA methylation changes during liver tumorigenesis and in liver tumors.Toxicol Sci. 2009 Apr;108(2):273-89. doi: 10.1093/toxsci/kfp031. Epub 2009 Feb 20.
5 A genetic variant in LINGO2 contributes to the risk of gestational diabetes mellitus in a Chinese population.J Cell Physiol. 2019 May;234(5):7012-7018. doi: 10.1002/jcp.27454. Epub 2018 Nov 13.
6 Analysis and meta-analysis of five polymorphisms of the LINGO1 and LINGO2 genes in Parkinson's disease and multiple system atrophy in a Chinese population.J Neurol. 2015 Nov;262(11):2478-83. doi: 10.1007/s00415-015-7870-9. Epub 2015 Aug 8.
7 Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia.Oncotarget. 2017 Jan 31;8(5):7891-7899. doi: 10.18632/oncotarget.13631.
8 Genetic polymorphisms in the 9p21 region associated with risk of multiple cancers.Carcinogenesis. 2014 Dec;35(12):2698-705. doi: 10.1093/carcin/bgu203. Epub 2014 Sep 19.
9 Haploinsufficiency of the miR-873/miR-876 microRNA cluster is associated with craniofacial abnormalities.Gene. 2015 Apr 25;561(1):95-100. doi: 10.1016/j.gene.2015.02.018. Epub 2015 Feb 11.
10 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
11 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
14 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
15 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 Genome-wide association for methamphetamine dependence: convergent results from 2 samples. Arch Gen Psychiatry. 2008 Mar;65(3):345-55. doi: 10.1001/archpsyc.65.3.345.