General Information of Drug Off-Target (DOT) (ID: OT3VM4JX)

DOT Name Phosphoglucomutase-1 (PGM1)
Synonyms PGM 1; EC 5.4.2.2; Glucose phosphomutase 1
Gene Name PGM1
Related Disease
PGM1-congenital disorder of glycosylation ( )
UniProt ID
PGM1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5EPC; 5F9C; 5HSH; 5JN5; 5TR2; 5VBI; 5VEC; 5VG7; 5VIN; 6SNO; 6SNP; 6SNQ; 6UIQ; 6UO6; 7S0W; 7S77
EC Number
5.4.2.2
Pfam ID
PF02878 ; PF02879 ; PF02880
Sequence
MVKIVTVKTQAYQDQKPGTSGLRKRVKVFQSSANYAENFIQSIISTVEPAQRQEATLVVG
GDGRFYMKEAIQLIARIAAANGIGRLVIGQNGILSTPAVSCIIRKIKAIGGIILTASHNP
GGPNGDFGIKFNISNGGPAPEAITDKIFQISKTIEEYAVCPDLKVDLGVLGKQQFDLENK
FKPFTVEIVDSVEAYATMLRSIFDFSALKELLSGPNRLKIRIDAMHGVVGPYVKKILCEE
LGAPANSAVNCVPLEDFGGHHPDPNLTYAADLVETMKSGEHDFGAAFDGDGDRNMILGKH
GFFVNPSDSVAVIAANIFSIPYFQQTGVRGFARSMPTSGALDRVASATKIALYETPTGWK
FFGNLMDASKLSLCGEESFGTGSDHIREKDGLWAVLAWLSILATRKQSVEDILKDHWQKY
GRNFFTRYDYEEVEAEGANKMMKDLEALMFDRSFVGKQFSANDKVYTVEKADNFEYSDPV
DGSISRNQGLRLIFTDGSRIVFRLSGTGSAGATIRLYIDSYEKDVAKINQDPQVMLAPLI
SIALKVSQLQERTGRTAPTVIT
Function This enzyme participates in both the breakdown and synthesis of glucose.
KEGG Pathway
Glycolysis / Gluconeogenesis (hsa00010 )
Pentose phosphate pathway (hsa00030 )
Galactose metabolism (hsa00052 )
Purine metabolism (hsa00230 )
Starch and sucrose metabolism (hsa00500 )
Amino sugar and nucleotide sugar metabolism (hsa00520 )
Metabolic pathways (hsa01100 )
Biosynthesis of nucleotide sugars (hsa01250 )
Reactome Pathway
Defective PGM1 causes PGM1-CDG (R-HSA-5609974 )
Neutrophil degranulation (R-HSA-6798695 )
Glycogen breakdown (glycogenolysis) (R-HSA-70221 )
Galactose catabolism (R-HSA-70370 )
Glycogen synthesis (R-HSA-3322077 )
BioCyc Pathway
MetaCyc:HS01335-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
PGM1-congenital disorder of glycosylation DISFFUBJ Definitive Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
28 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Phosphoglucomutase-1 (PGM1). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Phosphoglucomutase-1 (PGM1). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Phosphoglucomutase-1 (PGM1). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Phosphoglucomutase-1 (PGM1). [5]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Phosphoglucomutase-1 (PGM1). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Phosphoglucomutase-1 (PGM1). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Phosphoglucomutase-1 (PGM1). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Phosphoglucomutase-1 (PGM1). [9]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Phosphoglucomutase-1 (PGM1). [10]
Phenobarbital DMXZOCG Approved Phenobarbital decreases the expression of Phosphoglucomutase-1 (PGM1). [11]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Phosphoglucomutase-1 (PGM1). [12]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Phosphoglucomutase-1 (PGM1). [13]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Phosphoglucomutase-1 (PGM1). [14]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Phosphoglucomutase-1 (PGM1). [15]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Phosphoglucomutase-1 (PGM1). [16]
Capsaicin DMGMF6V Approved Capsaicin increases the expression of Phosphoglucomutase-1 (PGM1). [17]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Phosphoglucomutase-1 (PGM1). [18]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Phosphoglucomutase-1 (PGM1). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Phosphoglucomutase-1 (PGM1). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Phosphoglucomutase-1 (PGM1). [21]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Phosphoglucomutase-1 (PGM1). [22]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Phosphoglucomutase-1 (PGM1). [13]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Phosphoglucomutase-1 (PGM1). [23]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Phosphoglucomutase-1 (PGM1). [24]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Phosphoglucomutase-1 (PGM1). [25]
CH-223191 DMMJZYC Investigative CH-223191 increases the expression of Phosphoglucomutase-1 (PGM1). [26]
Linalool DMGZQ5P Investigative Linalool increases the expression of Phosphoglucomutase-1 (PGM1). [16]
Alpha-naphthoflavone DMELOIQ Investigative Alpha-naphthoflavone increases the expression of Phosphoglucomutase-1 (PGM1). [26]
------------------------------------------------------------------------------------
⏷ Show the Full List of 28 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Phosphoglucomutase-1 (PGM1). [20]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Phosphoglucomutase-1 (PGM1). [20]
------------------------------------------------------------------------------------

References

1 Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009 Jul 23;361(4):425-7. doi: 10.1056/NEJMc0901158.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
10 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
11 Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch Toxicol. 2022 Oct;96(10):2739-2754. doi: 10.1007/s00204-022-03338-7. Epub 2022 Jul 26.
12 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
13 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
14 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
15 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
16 Linalool is a PPARalpha ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome. J Lipid Res. 2014 Jun;55(6):1098-110.
17 Capsaicin induced the upregulation of transcriptional and translational expression of glycolytic enzymes related to energy metabolism in human intestinal epithelial cells. J Agric Food Chem. 2009 Dec 9;57(23):11148-53.
18 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
19 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
22 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
23 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
24 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
25 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
26 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated production of reactive oxygen species is an essential step in the mechanism of action to accelerate human keratinocyte differentiation. Toxicol Sci. 2013 Mar;132(1):235-49.