General Information of Drug Off-Target (DOT) (ID: OT6G8YF3)

DOT Name Probable ATP-dependent RNA helicase DDX20 (DDX20)
Synonyms EC 3.6.1.15; EC 3.6.4.13; Component of gems 3; DEAD box protein 20; DEAD box protein DP 103; Gemin-3
Gene Name DDX20
Related Disease
Glaucoma/ocular hypertension ( )
OPTN-related open angle glaucoma ( )
Advanced cancer ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Esophageal squamous cell carcinoma ( )
Hepatocellular carcinoma ( )
Motor neurone disease ( )
Myopathy ( )
Oropharyngeal squamous cell carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Amyotrophic lateral sclerosis ( )
Osteoarthritis ( )
UniProt ID
DDX20_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2OXC; 3B7G
EC Number
3.6.1.15; 3.6.4.13
Pfam ID
PF00270 ; PF00271
Sequence
MAAAFEASGALAAVATAMPAEHVAVQVPAPEPTPGPVRILRTAQDLSSPRTRTGDVLLAE
PADFESLLLSRPVLEGLRAAGFERPSPVQLKAIPLGRCGLDLIVQAKSGTGKTCVFSTIA
LDSLVLENLSTQILILAPTREIAVQIHSVITAIGIKMEGLECHVFIGGTPLSQDKTRLKK
CHIAVGSPGRIKQLIELDYLNPGSIRLFILDEADKLLEEGSFQEQINWIYSSLPASKQML
AVSATYPEFLANALTKYMRDPTFVRLNSSDPSLIGLKQYYKVVNSYPLAHKVFEEKTQHL
QELFSRIPFNQALVFSNLHSRAQHLADILSSKGFPAECISGNMNQNQRLDAMAKLKHFHC
RVLISTDLTSRGIDAEKVNLVVNLDVPLDWETYMHRIGRAGRFGTLGLTVTYCCRGEEEN
MMMRIAQKCNINLLPLPDPIPSGLMEECVDWDVEVKAAVHTYGIASVPNQPLKKQIQKIE
RTLQIQKAHGDHMASSRNNSVSGLSVKSKNNTKQKLPVKSHSECGIIEKATSPKELGCDR
QSEEQMKNSVQTPVENSTNSQHQVKEALPVSLPQIPCLSSFKIHQPYTLTFAELVEDYEH
YIKEGLEKPVEIIRHYTGPGDQTVNPQNGFVRNKVIEQRVPVLASSSQSGDSESDSDSYS
SRTSSQSKGNKSYLEGSSDNQLKDSESTPVDDRISLEQPPNGSDTPNPEKYQESPGIQMK
TRLKEGASQRAKQSRRNLPRRSSFRLQTEAQEDDWYDCHREIRLSFSDTYQDYEEYWRAY
YRAWQEYYAAASHSYYWNAQRHPSWMAAYHMNTIYLQEMMHSNQ
Function
The SMN complex catalyzes the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome, and thereby plays an important role in the splicing of cellular pre-mRNAs. Most spliceosomal snRNPs contain a common set of Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in a heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP (Sm core). In the cytosol, the Sm proteins SNRPD1, SNRPD2, SNRPE, SNRPF and SNRPG are trapped in an inactive 6S pICln-Sm complex by the chaperone CLNS1A that controls the assembly of the core snRNP. To assemble core snRNPs, the SMN complex accepts the trapped 5Sm proteins from CLNS1A forming an intermediate. Binding of snRNA inside 5Sm triggers eviction of the SMN complex, thereby allowing binding of SNRPD3 and SNRPB to complete assembly of the core snRNP. May also play a role in the metabolism of small nucleolar ribonucleoprotein (snoRNPs).
Tissue Specificity Ubiquitous.
Reactome Pathway
SARS-CoV-2 modulates host translation machinery (R-HSA-9754678 )
snRNP Assembly (R-HSA-191859 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Glaucoma/ocular hypertension DISLBXBY Definitive Genetic Variation [1]
OPTN-related open angle glaucoma DISDR98A Definitive Genetic Variation [1]
Advanced cancer DISAT1Z9 Strong Genetic Variation [2]
Bladder cancer DISUHNM0 Strong Genetic Variation [3]
Breast cancer DIS7DPX1 Strong Biomarker [4]
Breast carcinoma DIS2UE88 Strong Biomarker [4]
Esophageal squamous cell carcinoma DIS5N2GV Strong Genetic Variation [5]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [6]
Motor neurone disease DISUHWUI Strong Biomarker [7]
Myopathy DISOWG27 Strong Altered Expression [8]
Oropharyngeal squamous cell carcinoma DIS7D7QV Strong Genetic Variation [9]
Prostate cancer DISF190Y Strong Altered Expression [6]
Prostate carcinoma DISMJPLE Strong Altered Expression [6]
Urinary bladder cancer DISDV4T7 Strong Genetic Variation [3]
Urinary bladder neoplasm DIS7HACE Strong Genetic Variation [3]
Amyotrophic lateral sclerosis DISF7HVM moderate Biomarker [10]
Osteoarthritis DIS05URM Limited Altered Expression [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
11 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [12]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [13]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [14]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [15]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [16]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [17]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [18]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [19]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [21]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [22]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Probable ATP-dependent RNA helicase DDX20 (DDX20). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Probable ATP-dependent RNA helicase DDX20 (DDX20). [20]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of Probable ATP-dependent RNA helicase DDX20 (DDX20). [20]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the phosphorylation of Probable ATP-dependent RNA helicase DDX20 (DDX20). [24]
------------------------------------------------------------------------------------

References

1 Analysis of the polymorphic variants of RAN and GEMIN3 genes and risk of Primary Open-Angle Glaucoma in the Polish population.Ophthalmic Genet. 2018 Apr;39(2):180-188. doi: 10.1080/13816810.2017.1381978. Epub 2017 Nov 2.
2 The multiple lives of DEAD-box RNA helicase DP103/DDX20/Gemin3.Biochem Soc Trans. 2018 Apr 17;46(2):329-341. doi: 10.1042/BST20180016. Epub 2018 Mar 9.
3 Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer.Cancer Res. 2008 Apr 1;68(7):2530-7. doi: 10.1158/0008-5472.CAN-07-5991.
4 SMARCAD1 knockdown uncovers its role in breast cancer cell migration, invasion, and metastasis.Expert Opin Ther Targets. 2016 Sep;20(9):1035-43. doi: 10.1080/14728222.2016.1195059. Epub 2016 Jun 13.
5 Genetic polymorphisms of microRNA machinery genes predict overall survival of esophageal squamous carcinoma.J Clin Lab Anal. 2018 Jan;32(1):e22170. doi: 10.1002/jcla.22170. Epub 2017 Dec 11.
6 High expression of DDX20 enhances the proliferation and metastatic potential of prostate cancer cells through the NF-B pathway.Int J Mol Med. 2016 Jun;37(6):1551-7. doi: 10.3892/ijmm.2016.2575. Epub 2016 Apr 25.
7 Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3).Cell Stress Chaperones. 2010 Sep;15(5):567-82. doi: 10.1007/s12192-010-0169-y. Epub 2010 Feb 17.
8 Scurfy Mice Develop Features of Connective Tissue Disease Overlap Syndrome and Mixed Connective Tissue Disease in the Absence of Regulatory T Cells.Front Immunol. 2019 Apr 24;10:881. doi: 10.3389/fimmu.2019.00881. eCollection 2019.
9 Significance of microRNA-related variants in susceptibility to recurrence of oropharyngeal cancer patients after definitive radiotherapy.Oncotarget. 2016 Jun 7;7(23):35015-25. doi: 10.18632/oncotarget.9014.
10 SMN complex member Gemin3 self-interacts and has a functional relationship with ALS-linked proteins TDP-43, FUS and Sod1.Sci Rep. 2019 Dec 10;9(1):18666. doi: 10.1038/s41598-019-53508-4.
11 Integrating transcriptome-wide study and mRNA expression profiles yields novel insights into the biological mechanism of chondropathies.Arthritis Res Ther. 2019 Aug 27;21(1):194. doi: 10.1186/s13075-019-1978-8.
12 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
13 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
14 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
15 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
16 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
17 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
18 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
19 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
22 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
23 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
24 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.