General Information of Drug Off-Target (DOT) (ID: OT88C8JA)

DOT Name Sodium- and chloride-dependent creatine transporter 1 (SLC6A8)
Synonyms CT1; Creatine transporter 1; Solute carrier family 6 member 8
Gene Name SLC6A8
Related Disease
Creatine transporter deficiency ( )
UniProt ID
SC6A8_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00209
Sequence
MAKKSAENGIYSVSGDEKKGPLIAPGPDGAPAKGDGPVGLGTPGGRLAVPPRETWTRQMD
FIMSCVGFAVGLGNVWRFPYLCYKNGGGVFLIPYVLIALVGGIPIFFLEISLGQFMKAGS
INVWNICPLFKGLGYASMVIVFYCNTYYIMVLAWGFYYLVKSFTTTLPWATCGHTWNTPD
CVEIFRHEDCANASLANLTCDQLADRRSPVIEFWENKVLRLSGGLEVPGALNWEVTLCLL
ACWVLVYFCVWKGVKSTGKIVYFTATFPYVVLVVLLVRGVLLPGALDGIIYYLKPDWSKL
GSPQVWIDAGTQIFFSYAIGLGALTALGSYNRFNNNCYKDAIILALINSGTSFFAGFVVF
SILGFMAAEQGVHISKVAESGPGLAFIAYPRAVTLMPVAPLWAALFFFMLLLLGLDSQFV
GVEGFITGLLDLLPASYYFRFQREISVALCCALCFVIDLSMVTDGGMYVFQLFDYYSASG
TTLLWQAFWECVVVAWVYGADRFMDDIACMIGYRPCPWMKWCWSFFTPLVCMGIFIFNVV
YYEPLVYNNTYVYPWWGEAMGWAFALSSMLCVPLHLLGCLLRAKGTMAERWQHLTQPIWG
LHHLEYRAQDADVRGLTTLTPVSESSKVVVVESVM
Function Creatine:sodium symporter which mediates the uptake of creatine. Plays an important role in supplying creatine to the brain via the blood-brain barrier.
Tissue Specificity Predominantly expressed in skeletal muscle and kidney. Also found in brain, heart, colon, testis and prostate.
Reactome Pathway
Creatine metabolism (R-HSA-71288 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Creatine transporter deficiency DIS8FWNV Definitive X-linked [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [2]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [20]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [23]
------------------------------------------------------------------------------------
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [5]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [9]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [10]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [11]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [12]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [13]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [14]
Selenium DM25CGV Approved Selenium increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [15]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [11]
Zidovudine DM4KI7O Approved Zidovudine decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [16]
Ampicillin DMHWE7P Approved Ampicillin increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [8]
Atenolol DMNKG1Z Approved Atenolol decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [17]
Ammonia DMOEVK6 Approved Ammonia affects the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [18]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [19]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [11]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [15]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [21]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [24]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [25]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [26]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of Sodium- and chloride-dependent creatine transporter 1 (SLC6A8). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
5 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
10 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
11 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
12 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
13 Gene induction and apoptosis in human hepatocellular carci-noma cells SMMC-7721 exposed to 5-aza-2'-deoxycytidine. Chin Med J (Engl). 2007 Sep 20;120(18):1626-31.
14 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
15 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
16 Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol. 2014 Mar;88(3):609-23. doi: 10.1007/s00204-013-1169-3. Epub 2013 Nov 30.
17 Change in mRNA Expression after Atenolol, a Beta-adrenergic Receptor Antagonist and Association with Pharmacological Response. Arch Drug Inf. 2009 Sep;2(3):41-50. doi: 10.1111/j.1753-5174.2009.00020.x.
18 Ammonia toxicity to the brain: effects on creatine metabolism and transport and protective roles of creatine. Mol Genet Metab. 2010;100 Suppl 1:S53-8. doi: 10.1016/j.ymgme.2010.02.011. Epub 2010 Feb 14.
19 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
20 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
21 Synergistic effect of JQ1 and rapamycin for treatment of human osteosarcoma. Int J Cancer. 2015 May 1;136(9):2055-64.
22 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
23 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
24 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
25 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
26 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
27 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.