General Information of Drug Off-Target (DOT) (ID: OTBAAHL5)

DOT Name Peroxisomal bifunctional enzyme (EHHADH)
Synonyms PBE; PBFE; L-bifunctional protein; LBP; Multifunctional enzyme 1; MFE1
Gene Name EHHADH
Related Disease
Amyloidosis ( )
Bipolar disorder ( )
Carnitine palmitoyltransferase II deficiency ( )
Cytochrome-c oxidase deficiency disease ( )
D-bifunctional protein deficiency ( )
Disorder of glycogen metabolism ( )
Drug dependence ( )
Familial hyperinsulinism ( )
Fanconi renotubular syndrome 1 ( )
Hepatocellular carcinoma ( )
Hyperinsulinemia ( )
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency ( )
Mitochondrial disease ( )
Mitochondrial trifunctional protein deficiency ( )
Prostate cancer ( )
Prostate neoplasm ( )
Proximal renal tubular acidosis ( )
Substance abuse ( )
Substance dependence ( )
Tuberculosis ( )
Primary Fanconi syndrome ( )
Fanconi renotubular syndrome 3 ( )
Parkinson disease ( )
UniProt ID
ECHP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.1.1.35; 4.2.1.17; 5.3.3.8
Pfam ID
PF00725 ; PF02737 ; PF00378
Sequence
MAEYTRLHNALALIRLRNPPVNAISTTLLRDIKEGLQKAVIDHTIKAIVICGAEGKFSAG
ADIRGFSAPRTFGLTLGHVVDEIQRNEKPVVAAIQGMAFGGGLELALGCHYRIAHAEAQV
GLPEVTLGLLPGARGTQLLPRLTGVPAALDLITSGRRILADEALKLGILDKVVNSDPVEE
AIRFAQRVSDQPLESRRLCNKPIQSLPNMDSIFSEALLKMRRQHPGCLAQEACVRAVQAA
VQYPYEVGIKKEEELFLYLLQSGQARALQYAFFAERKANKWSTPSGASWKTASARPVSSV
GVVGLGTMGRGIVISFARARIPVIAVDSDKNQLATANKMITSVLEKEASKMQQSGHPWSG
PKPRLTSSVKELGGVDLVIEAVFEEMSLKKQVFAELSAVCKPEAFLCTNTSALDVDEIAS
STDRPHLVIGTHFFSPAHVMKLLEVIPSQYSSPTTIATVMNLSKKIKKIGVVVGNCFGFV
GNRMLNPYYNQAYFLLEEGSKPEEVDQVLEEFGFKMGPFRVSDLAGLDVGWKSRKGQGLT
GPTLLPGTPARKRGNRRYCPIPDVLCELGRFGQKTGKGWYQYDKPLGRIHKPDPWLSKFL
SRYRKTHHIEPRTISQDEILERCLYSLINEAFRILGEGIAASPEHIDVVYLHGYGWPRHK
GGPMFYASTVGLPTVLEKLQKYYRQNPDIPQLEPSDYLKKLASQGNPPLKEWQSLAGSPS
SKL
Function
Peroxisomal trifunctional enzyme possessing 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and delta 3, delta 2-enoyl-CoA isomerase activities. Catalyzes two of the four reactions of the long chain fatty acids peroxisomal beta-oxidation pathway. Can also use branched-chain fatty acids such as 2-methyl-2E-butenoyl-CoA as a substrate, which is hydrated into (2S,3S)-3-hydroxy-2-methylbutanoyl-CoA. Optimal isomerase for 2,5 double bonds into 3,5 form isomerization in a range of enoyl-CoA species (Probable). Also able to isomerize both 3-cis and 3-trans double bonds into the 2-trans form in a range of enoyl-CoA species. With HSD17B4, catalyzes the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. Regulates the amount of medium-chain dicarboxylic fatty acids which are essential regulators of all fatty acid oxidation pathways. Also involved in the degradation of long-chain dicarboxylic acids through peroxisomal beta-oxidation.
Tissue Specificity Liver and kidney. Strongly expressed in the terminal segments of the proximal tubule. Lower amounts seen in the brain.
KEGG Pathway
Fatty acid degradation (hsa00071 )
Valine, leucine and isoleucine degradation (hsa00280 )
Lysine degradation (hsa00310 )
Tryptophan metabolism (hsa00380 )
beta-Alanine metabolism (hsa00410 )
Propanoate metabolism (hsa00640 )
Butanoate metabolism (hsa00650 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
PPAR sig.ling pathway (hsa03320 )
Peroxisome (hsa04146 )
Reactome Pathway
Peroxisomal protein import (R-HSA-9033241 )
Beta-oxidation of very long chain fatty acids (R-HSA-390247 )
BioCyc Pathway
MetaCyc:HS03720-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Amyloidosis DISHTAI2 Strong Biomarker [1]
Bipolar disorder DISAM7J2 Strong Biomarker [2]
Carnitine palmitoyltransferase II deficiency DIS3GFD9 Strong Genetic Variation [3]
Cytochrome-c oxidase deficiency disease DISK7N3G Strong Genetic Variation [3]
D-bifunctional protein deficiency DISMU0DP Strong GermlineCausalMutation [4]
Disorder of glycogen metabolism DISYGNOB Strong Genetic Variation [3]
Drug dependence DIS9IXRC Strong Biomarker [5]
Familial hyperinsulinism DISHQKQE Strong Genetic Variation [6]
Fanconi renotubular syndrome 1 DIS30RYU Strong GermlineCausalMutation [7]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [8]
Hyperinsulinemia DISIDWT6 Strong Genetic Variation [9]
Long chain 3-hydroxyacyl-CoA dehydrogenase deficiency DIS4F710 Strong Biomarker [10]
Mitochondrial disease DISKAHA3 Strong Genetic Variation [3]
Mitochondrial trifunctional protein deficiency DIS2MYYR Strong Biomarker [10]
Prostate cancer DISF190Y Strong Biomarker [11]
Prostate neoplasm DISHDKGQ Strong Biomarker [11]
Proximal renal tubular acidosis DIS8M3CV Strong Genetic Variation [12]
Substance abuse DIS327VW Strong Biomarker [5]
Substance dependence DISDRAAR Strong Biomarker [5]
Tuberculosis DIS2YIMD Strong Biomarker [13]
Primary Fanconi syndrome DISR144Y Supportive Autosomal dominant [7]
Fanconi renotubular syndrome 3 DISD0LGA Limited Autosomal dominant [14]
Parkinson disease DISQVHKL Limited Biomarker [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
24 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [16]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [17]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [18]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [19]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [20]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [17]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [21]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [22]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [23]
Rosiglitazone DMILWZR Approved Rosiglitazone increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [24]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [25]
Aspirin DM672AH Approved Aspirin decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [26]
Deoxycholic acid DM3GYAL Approved Deoxycholic acid decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [26]
Tetracycline DMZA017 Approved Tetracycline decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [26]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [27]
Isoflavone DM7U58J Phase 4 Isoflavone increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [28]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [29]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [30]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [26]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [31]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Peroxisomal bifunctional enzyme (EHHADH). [22]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Peroxisomal bifunctional enzyme (EHHADH). [33]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [34]
GW7647 DM9RD0C Investigative GW7647 increases the expression of Peroxisomal bifunctional enzyme (EHHADH). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of Peroxisomal bifunctional enzyme (EHHADH). [32]
------------------------------------------------------------------------------------

References

1 scully, an essential gene of Drosophila, is homologous to mammalian mitochondrial type II L-3-hydroxyacyl-CoA dehydrogenase/amyloid-beta peptide-binding protein.J Cell Biol. 1998 May 18;141(4):1009-17. doi: 10.1083/jcb.141.4.1009.
2 Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios.Am J Hum Genet. 2005 Dec;77(6):918-36. doi: 10.1086/497703. Epub 2005 Oct 28.
3 Neonatal metabolic myopathies.Semin Perinatol. 1999 Apr;23(2):125-51. doi: 10.1016/s0146-0005(99)80046-9.
4 Amino acid and nucleotide sequences of human peroxisomal enoyl-CoA hydratase: 3-hydroxyacyl-CoA dehydrogenase cDNA.J Inherit Metab Dis. 1998 Feb;21(1):23-8. doi: 10.1023/a:1005355112975.
5 Genome wide association for addiction: replicated results and comparisons of two analytic approaches.PLoS One. 2010 Jan 21;5(1):e8832. doi: 10.1371/journal.pone.0008832.
6 Rare forms of congenital hyperinsulinism.Semin Pediatr Surg. 2011 Feb;20(1):38-44. doi: 10.1053/j.sempedsurg.2010.10.006.
7 Mistargeting of peroxisomal EHHADH and inherited renal Fanconi's syndrome. N Engl J Med. 2014 Jan 9;370(2):129-38. doi: 10.1056/NEJMoa1307581.
8 Decreased expression of the peroxisomal bifunctional enzyme and carbonyl reductase in human hepatocellular carcinomas.J Cancer Res Clin Oncol. 1999;125(2):83-8. doi: 10.1007/s004320050246.
9 Insights in congenital hyperinsulinism.Endocr Dev. 2007;11:106-121. doi: 10.1159/000111066.
10 Hepatic carnitine palmitoyltransferase I deficiency presenting as maternal illness in pregnancy.Pediatr Res. 2000 Jan;47(1):43-5. doi: 10.1203/00006450-200001000-00010.
11 The long tail of oncogenic drivers in prostate cancer.Nat Genet. 2018 May;50(5):645-651. doi: 10.1038/s41588-018-0078-z. Epub 2018 Apr 2.
12 Molecular Pathophysiology of Acid-Base Disorders.Semin Nephrol. 2019 Jul;39(4):340-352. doi: 10.1016/j.semnephrol.2019.04.004.
13 Crystal structure of Mycobacterium tuberculosis FadB2 implicated in mycobacterial -oxidation.Acta Crystallogr D Struct Biol. 2019 Jan 1;75(Pt 1):101-108. doi: 10.1107/S2059798318017242. Epub 2019 Jan 8.
14 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
15 L-3-hydroxyacyl-CoA dehydrogenase II protects in a model of Parkinson's disease.Ann Neurol. 2004 Jul;56(1):51-60. doi: 10.1002/ana.20133.
16 In vitro assessment of drug-induced liver steatosis based on human dermal stem cell-derived hepatic cells. Arch Toxicol. 2016 Mar;90(3):677-89. doi: 10.1007/s00204-015-1483-z. Epub 2015 Feb 26.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol Lett. 2015 Apr 16;234(2):139-50.
19 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
20 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
21 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
22 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
23 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
24 Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol. 2022 May 1;442:115991. doi: 10.1016/j.taap.2022.115991. Epub 2022 Mar 23.
25 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
26 Advantageous use of HepaRG cells for the screening and mechanistic study of drug-induced steatosis. Toxicol Appl Pharmacol. 2016 Jul 1;302:1-9. doi: 10.1016/j.taap.2016.04.007. Epub 2016 Apr 16.
27 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
28 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
29 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
30 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
31 Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol Immunol. 2007 May;44(12):3222-33.
32 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
33 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
34 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
35 Farnesol induces fatty acid oxidation and decreases triglyceride accumulation in steatotic HepaRG cells. Toxicol Appl Pharmacol. 2019 Feb 15;365:61-70.