General Information of Drug Off-Target (DOT) (ID: OTBXUNPL)

DOT Name Sterol regulatory element-binding protein 2 (SREBF2)
Synonyms SREBP-2; Class D basic helix-loop-helix protein 2; bHLHd2; Sterol regulatory element-binding transcription factor 2
Gene Name SREBF2
UniProt ID
SRBP2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1UKL
Pfam ID
PF00010
Sequence
MDDSGELGGLETMETLTELGDELTLGDIDEMLQFVSNQVGEFPDLFSEQLCSSFPGSGGS
GSSSGSSGSSSSSSNGRGSSSGAVDPSVQRSFTQVTLPSFSPSAASPQAPTLQVKVSPTS
VPTTPRATPILQPRPQPQPQPQTQLQQQTVMITPTFSTTPQTRIIQQPLIYQNAATSFQV
LQPQVQSLVTSSQVQPVTIQQQVQTVQAQRVLTQTANGTLQTLAPATVQTVAAPQVQQVP
VLVQPQIIKTDSLVLTTLKTDGSPVMAAVQNPALTALTTPIQTAALQVPTLVGSSGTILT
TMPVMMGQEKVPIKQVPGGVKQLEPPKEGERRTTHNIIEKRYRSSINDKIIELKDLVMGT
DAKMHKSGVLRKAIDYIKYLQQVNHKLRQENMVLKLANQKNKLLKGIDLGSLVDNEVDLK
IEDFNQNVLLMSPPASDSGSQAGFSPYSIDSEPGSPLLDDAKVKDEPDSPPVALGMVDRS
RILLCVLTFLCLSFNPLTSLLQWGGAHDSDQHPHSGSGRSVLSFESGSGGWFDWMMPTLL
LWLVNGVIVLSVFVKLLVHGEPVIRPHSRSSVTFWRHRKQADLDLARGDFAAAAGNLQTC
LAVLGRALPTSRLDLACSLSWNVIRYSLQKLRLVRWLLKKVFQCRRATPATEAGFEDEAK
TSARDAALAYHRLHQLHITGKLPAGSACSDVHMALCAVNLAECAEEKIPPSTLVEIHLTA
AMGLKTRCGGKLGFLASYFLSRAQSLCGPEHSAVPDSLRWLCHPLGQKFFMERSWSVKSA
AKESLYCAQRNPADPIAQVHQAFCKNLLERAIESLVKPQAKKKAGDQEEESCEFSSALEY
LKLLHSFVDSVGVMSPPLSRSSVLKSALGPDIICRWWTSAITVAISWLQGDDAAVRSHFT
KVERIPKALEVTESPLVKAIFHACRAMHASLPGKADGQQSSFCHCERASGHLWSSLNVSG
ATSDPALNHVVQLLTCDLLLSLRTALWQKQASASQAVGETYHASGAELAGFQRDLGSLRR
LAHSFRPAYRKVFLHEATVRLMAGASPTRTHQLLEHSLRRRTTQSTKHGEVDAWPGQRER
ATAILLACRHLPLSFLSSPGQRAVLLAEAARTLEKVGDRRSCNDCQQMIVKLGGGTAIAA
S
Function
[Sterol regulatory element-binding protein 2]: Precursor of the transcription factor form (Processed sterol regulatory element-binding protein 2), which is embedded in the endoplasmic reticulum membrane. Low sterol concentrations promote processing of this form, releasing the transcription factor form that translocates into the nucleus and activates transcription of genes involved in cholesterol biosynthesis ; [Processed sterol regulatory element-binding protein 2]: Key transcription factor that regulates expression of genes involved in cholesterol biosynthesis. Binds to the sterol regulatory element 1 (SRE-1) (5'-ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3'). Regulates transcription of genes related to cholesterol synthesis pathway.
Tissue Specificity Ubiquitously expressed in adult and fetal tissues.
Reactome Pathway
Cholesterol biosynthesis (R-HSA-191273 )
PPARA activates gene expression (R-HSA-1989781 )
Activation of gene expression by SREBF (SREBP) (R-HSA-2426168 )
Transcriptional regulation of white adipocyte differentiation (R-HSA-381340 )
EGR2 and SOX10-mediated initiation of Schwann cell myelination (R-HSA-9619665 )
Regulation of cholesterol biosynthesis by SREBP (SREBF) (R-HSA-1655829 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Ritonavir DMU764S Approved Sterol regulatory element-binding protein 2 (SREBF2) increases the Hepatomegaly ADR of Ritonavir. [36]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
ANW-32821 DMMJOZD Phase 2 Sterol regulatory element-binding protein 2 (SREBF2) increases the abundance of ANW-32821. [37]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Sterol regulatory element-binding protein 2 (SREBF2). [1]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Sterol regulatory element-binding protein 2 (SREBF2). [24]
------------------------------------------------------------------------------------
31 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [2]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [5]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [6]
Carbamazepine DMZOLBI Approved Carbamazepine decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [7]
Marinol DM70IK5 Approved Marinol increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [8]
Selenium DM25CGV Approved Selenium increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [9]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [10]
Clozapine DMFC71L Approved Clozapine increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [11]
Menthol DMG2KW7 Approved Menthol decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [12]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [13]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [14]
Bezafibrate DMZDCS0 Approved Bezafibrate increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [17]
Crizotinib DM4F29C Approved Crizotinib increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [18]
Ezetimibe DM7A8TW Approved Ezetimibe decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [19]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [20]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [21]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [23]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [25]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [27]
Milchsaure DM462BT Investigative Milchsaure increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [28]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [29]
geraniol DMS3CBD Investigative geraniol increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [30]
Okadaic acid DM47CO1 Investigative Okadaic acid decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [31]
Lead acetate DML0GZ2 Investigative Lead acetate increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [32]
Linalool DMGZQ5P Investigative Linalool decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [33]
3,7,3',4'-TETRAHYDROXYFLAVONE DMES906 Investigative 3,7,3',4'-TETRAHYDROXYFLAVONE increases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [34]
Ganoderic acid A DM42EVG Investigative Ganoderic acid A decreases the expression of Sterol regulatory element-binding protein 2 (SREBF2). [35]
25-hydroxycholesterol DMCHAQ7 Investigative 25-hydroxycholesterol decreases the activity of Sterol regulatory element-binding protein 2 (SREBF2). [11]
------------------------------------------------------------------------------------
⏷ Show the Full List of 31 Drug(s)
1 Drug(s) Affected the Biochemical Pathways of This DOT
Drug Name Drug ID Highest Status Interaction REF
Vitamin C DMXJ7O8 Approved Vitamin C decreases the metabolism of Sterol regulatory element-binding protein 2 (SREBF2). [15]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Lovastatin DM9OZWQ Approved Lovastatin increases the localization of Sterol regulatory element-binding protein 2 (SREBF2). [16]
Atorvastatin DMF28YC Phase 3 Trial Atorvastatin increases the localization of Sterol regulatory element-binding protein 2 (SREBF2). [16]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the cleavage of Sterol regulatory element-binding protein 2 (SREBF2). [22]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
3 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
7 Phospholipidosis induced by PPARgama signaling in human bronchial epithelial (BEAS-2B) cells exposed to amiodarone. Toxicol Sci. 2011 Mar;120(1):98-108.
8 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
9 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
10 New insights into the mechanisms underlying 5-fluorouracil-induced intestinal toxicity based on transcriptomic and metabolomic responses in human intestinal organoids. Arch Toxicol. 2021 Aug;95(8):2691-2718. doi: 10.1007/s00204-021-03092-2. Epub 2021 Jun 20.
11 Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: marked differences between various antipsychotic drugs. BMC Neurosci. 2006 Oct 20;7:69.
12 Repurposing L-menthol for systems medicine and cancer therapeutics? L-menthol induces apoptosis through caspase 10 and by suppressing HSP90. OMICS. 2016 Jan;20(1):53-64.
13 Effect of simvastatin on cholesterol metabolism in C2C12 myotubes and HepG2 cells, and consequences for statin-induced myopathy. Biochem Pharmacol. 2010 Apr 15;79(8):1200-9. doi: 10.1016/j.bcp.2009.12.007. Epub 2009 Dec 14.
14 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
15 Ascorbic acid enhances low-density lipoprotein receptor expression by suppressing proprotein convertase subtilisin/kexin 9 expression. J Biol Chem. 2020 Nov 20;295(47):15870-15882. doi: 10.1074/jbc.RA120.015623. Epub 2020 Sep 10.
16 Effect of atorvastatin, simvastatin, and lovastatin on the metabolism of cholesterol and triacylglycerides in HepG2 cells. Biochem Pharmacol. 2001 Dec 1;62(11):1545-55. doi: 10.1016/s0006-2952(01)00790-0.
17 Fibrates modify the expression of key factors involved in bile-acid synthesis and biliary-lipid secretion in gallstone patients. Eur J Clin Pharmacol. 2004 Feb;59(12):855-61. doi: 10.1007/s00228-003-0704-1. Epub 2003 Dec 18.
18 Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes. Toxicol Appl Pharmacol. 2013 Oct 1;272(1):245-55.
19 Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. J Nutr. 2005 Oct;135(10):2305-12. doi: 10.1093/jn/135.10.2305.
20 Androgen regulation of prostasin gene expression is mediated by sterol-regulatory element-binding proteins and SLUG. Prostate. 2006 Jun 15;66(9):911-20. doi: 10.1002/pros.20325.
21 Resveratrol increases the expression and activity of the low density lipoprotein receptor in hepatocytes by the proteolytic activation of the sterol regulatory element-binding proteins. Atherosclerosis. 2012 Feb;220(2):369-74. doi: 10.1016/j.atherosclerosis.2011.11.006. Epub 2011 Nov 16.
22 Metformin treatment prevents SREBP2-mediated cholesterol uptake and improves lipid homeostasis during oxidative stress-induced atherosclerosis. Free Radic Biol Med. 2018 Apr;118:85-97. doi: 10.1016/j.freeradbiomed.2018.02.031. Epub 2018 Mar 2.
23 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
24 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
25 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
26 Caffeine programs hepatic SIRT1-related cholesterol synthesis and hypercholesterolemia via A2AR/cAMP/PKA pathway in adult male offspring rats. Toxicology. 2019 Apr 15;418:11-21.
27 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
28 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
29 Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. Br J Pharmacol. 2013 Jul;169(6):1352-71. doi: 10.1111/bph.12226.
30 Transcriptional and posttranscriptional inhibition of HMGCR and PC biosynthesis by geraniol in 2 Hep-G2 cell proliferation linked pathways. Biochem Cell Biol. 2013 Jun;91(3):131-9.
31 Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro. 2018 Feb;46:102-112.
32 SIRT1/mTOR pathway-mediated autophagy dysregulation promotes Pb-induced hepatic lipid accumulation in HepG2 cells. Environ Toxicol. 2022 Mar;37(3):549-563. doi: 10.1002/tox.23420. Epub 2021 Nov 29.
33 Linalool reduces the expression of 3-hydroxy-3-methylglutaryl CoA reductase via sterol regulatory element binding protein-2- and ubiquitin-dependent mechanisms. FEBS Lett. 2011 Oct 20;585(20):3289-96.
34 Hypocholesterolemic effect of daily fisetin supplementation in high fat fed Sprague-Dawley rats. Food Chem Toxicol. 2013 Jul;57:84-90. doi: 10.1016/j.fct.2013.03.010. Epub 2013 Mar 21.
35 Ganoderic Acid A improves high fat diet-induced obesity, lipid accumulation and insulin sensitivity through regulating SREBP pathway. Chem Biol Interact. 2018 Jun 25;290:77-87.
36 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
37 SREBF2 triggers endoplasmic reticulum stress and Bax dysregulation to promote lipopolysaccharide-induced endothelial cell injury. Cell Biol Toxicol. 2022 Feb;38(1):185-201. doi: 10.1007/s10565-021-09593-1. Epub 2021 Mar 6.