General Information of Drug Off-Target (DOT) (ID: OTFGGM9R)

DOT Name Peroxidasin homolog (PXDN)
Synonyms EC 1.11.2.-; Melanoma-associated antigen MG50; Peroxidasin 1; hsPxd01; Vascular peroxidase 1; p53-responsive gene 2 protein
Gene Name PXDN
Related Disease
Anterior segment dysgenesis 7 ( )
Microphthalmia ( )
Abdominal aortic aneurysm ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Autism ( )
Cardiovascular disease ( )
Chronic kidney disease ( )
Congenital glaucoma ( )
Epithelial ovarian cancer ( )
Juvenile open angle glaucoma ( )
Lung carcinoma ( )
Myocardial infarction ( )
Ovarian cancer ( )
Ovarian neoplasm ( )
Prostate cancer ( )
Prostate carcinoma ( )
Vasculitis ( )
Chronic obstructive pulmonary disease ( )
High blood pressure ( )
Melanoma ( )
Neoplasm ( )
Renal fibrosis ( )
Type-1/2 diabetes ( )
UniProt ID
PXDN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
1.11.2.-
Pfam ID
PF03098 ; PF07679 ; PF00560 ; PF13855 ; PF00093
Sequence
MAKRSRGPGRRCLLALVLFCAWGTLAVVAQKPGAGCPSRCLCFRTTVRCMHLLLEAVPAV
APQTSILDLRFNRIREIQPGAFRRLRNLNTLLLNNNQIKRIPSGAFEDLENLKYLYLYKN
EIQSIDRQAFKGLASLEQLYLHFNQIETLDPDSFQHLPKLERLFLHNNRITHLVPGTFNH
LESMKRLRLDSNTLHCDCEILWLADLLKTYAESGNAQAAAICEYPRRIQGRSVATITPEE
LNCERPRITSEPQDADVTSGNTVYFTCRAEGNPKPEIIWLRNNNELSMKTDSRLNLLDDG
TLMIQNTQETDQGIYQCMAKNVAGEVKTQEVTLRYFGSPARPTFVIQPQNTEVLVGESVT
LECSATGHPPPRISWTRGDRTPLPVDPRVNITPSGGLYIQNVVQGDSGEYACSATNNIDS
VHATAFIIVQALPQFTVTPQDRVVIEGQTVDFQCEAKGNPPPVIAWTKGGSQLSVDRRHL
VLSSGTLRISGVALHDQGQYECQAVNIIGSQKVVAHLTVQPRVTPVFASIPSDTTVEVGA
NVQLPCSSQGEPEPAITWNKDGVQVTESGKFHISPEGFLTINDVGPADAGRYECVARNTI
GSASVSMVLSVNVPDVSRNGDPFVATSIVEAIATVDRAINSTRTHLFDSRPRSPNDLLAL
FRYPRDPYTVEQARAGEIFERTLQLIQEHVQHGLMVDLNGTSYHYNDLVSPQYLNLIANL
SGCTAHRRVNNCSDMCFHQKYRTHDGTCNNLQHPMWGASLTAFERLLKSVYENGFNTPRG
INPHRLYNGHALPMPRLVSTTLIGTETVTPDEQFTHMLMQWGQFLDHDLDSTVVALSQAR
FSDGQHCSNVCSNDPPCFSVMIPPNDSRARSGARCMFFVRSSPVCGSGMTSLLMNSVYPR
EQINQLTSYIDASNVYGSTEHEARSIRDLASHRGLLRQGIVQRSGKPLLPFATGPPTECM
RDENESPIPCFLAGDHRANEQLGLTSMHTLWFREHNRIATELLKLNPHWDGDTIYYETRK
IVGAEIQHITYQHWLPKILGEVGMRTLGEYHGYDPGINAGIFNAFATAAFRFGHTLVNPL
LYRLDENFQPIAQDHLPLHKAFFSPFRIVNEGGIDPLLRGLFGVAGKMRVPSQLLNTELT
ERLFSMAHTVALDLAAINIQRGRDHGIPPYHDYRVYCNLSAAHTFEDLKNEIKNPEIREK
LKRLYGSTLNIDLFPALVVEDLVPGSRLGPTLMCLLSTQFKRLRDGDRLWYENPGVFSPA
QLTQIKQTSLARILCDNADNITRVQSDVFRVAEFPHGYGSCDEIPRVDLRVWQDCCEDCR
TRGQFNAFSYHFRGRRSLEFSYQEDKPTKKTRPRKIPSVGRQGEHLSNSTSAFSTRSDAS
GTNDFREFVLEMQKTITDLRTQIKKLESRLSTTECVDAGGESHANNTKWKKDACTICECK
DGQVTCFVEACPPATCAVPVNIPGACCPVCLQKRAEEKP
Function
Catalyzes the two-electron oxidation of bromide by hydrogen peroxide and generates hypobromite as a reactive intermediate which mediates the formation of sulfilimine cross-links between methionine and hydroxylysine residues within an uncross-linked collagen IV/COL4A1 NC1 hexamer. In turns, directly contributes to the collagen IV network-dependent fibronectin/FN and laminin assembly, which is required for full extracellular matrix (ECM)-mediated signaling. Thus, sulfilimine cross-links are essential for growth factor-induced cell proliferation and survival in endothelial cells, an event essential to basement membrane integrity. In addition, through the bromide oxidation, may promote tubulogenesis and induce angiogenesis through ERK1/2, Akt, and FAK pathways. Moreover brominates alpha2 collagen IV chain/COL4A2 at 'Tyr-1485' and leads to bromine enrichment of the basement membranes. In vitro, can also catalyze the two-electron oxidation of thiocyanate and iodide and these two substrates could effectively compete with bromide and thus inhibit the formation of sulfilimine bonds. Binds laminins. May play a role in the organization of eyeball structure and lens development during eye development.
Tissue Specificity
Expressed at higher levels in heart, lung, ovary, spleen, intestine and placenta, and at lower levels in liver, colon, pancreas, kidney, thymus, skeletal muscle and prostate. Expressed in tumors such as melanoma, breast cancer, ovarian cancer and glioblastoma. A shorter form probably lacking the signal sequence is found in testis and in EB1 cells undergoing p53/TP53-dependent apoptosis.
Reactome Pathway
Crosslinking of collagen fibrils (R-HSA-2243919 )

Molecular Interaction Atlas (MIA) of This DOT

24 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Anterior segment dysgenesis 7 DISP6CEE Definitive Autosomal recessive [1]
Microphthalmia DISGEBES Definitive Genetic Variation [2]
Abdominal aortic aneurysm DISD06OF Strong Biomarker [3]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [4]
Advanced cancer DISAT1Z9 Strong Biomarker [5]
Autism DISV4V1Z Strong Biomarker [6]
Cardiovascular disease DIS2IQDX Strong Biomarker [7]
Chronic kidney disease DISW82R7 Strong Biomarker [8]
Congenital glaucoma DISHN3GO Strong Genetic Variation [9]
Epithelial ovarian cancer DIS56MH2 Strong Altered Expression [5]
Juvenile open angle glaucoma DISZ43T5 Strong Genetic Variation [9]
Lung carcinoma DISTR26C Strong Biomarker [10]
Myocardial infarction DIS655KI Strong Biomarker [11]
Ovarian cancer DISZJHAP Strong Altered Expression [5]
Ovarian neoplasm DISEAFTY Strong Altered Expression [5]
Prostate cancer DISF190Y Strong Biomarker [12]
Prostate carcinoma DISMJPLE Strong Biomarker [12]
Vasculitis DISQRKDX Strong Biomarker [13]
Chronic obstructive pulmonary disease DISQCIRF moderate Biomarker [14]
High blood pressure DISY2OHH moderate Biomarker [14]
Melanoma DIS1RRCY Limited Biomarker [15]
Neoplasm DISZKGEW Limited Biomarker [16]
Renal fibrosis DISMHI3I Limited Biomarker [11]
Type-1/2 diabetes DISIUHAP Limited Biomarker [17]
------------------------------------------------------------------------------------
⏷ Show the Full List of 24 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Peroxidasin homolog (PXDN). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Peroxidasin homolog (PXDN). [31]
------------------------------------------------------------------------------------
19 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Peroxidasin homolog (PXDN). [19]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Peroxidasin homolog (PXDN). [20]
Estradiol DMUNTE3 Approved Estradiol affects the expression of Peroxidasin homolog (PXDN). [21]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Peroxidasin homolog (PXDN). [22]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of Peroxidasin homolog (PXDN). [23]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Peroxidasin homolog (PXDN). [24]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Peroxidasin homolog (PXDN). [25]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of Peroxidasin homolog (PXDN). [26]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Peroxidasin homolog (PXDN). [27]
Ethinyl estradiol DMODJ40 Approved Ethinyl estradiol affects the expression of Peroxidasin homolog (PXDN). [28]
Lucanthone DMZLBUO Approved Lucanthone increases the expression of Peroxidasin homolog (PXDN). [29]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Peroxidasin homolog (PXDN). [28]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Peroxidasin homolog (PXDN). [30]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Peroxidasin homolog (PXDN). [32]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Peroxidasin homolog (PXDN). [33]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Peroxidasin homolog (PXDN). [34]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Peroxidasin homolog (PXDN). [35]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Peroxidasin homolog (PXDN). [36]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Peroxidasin homolog (PXDN). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Biallelic Deletion of Pxdn in Mice Leads to Anophthalmia and Severe Eye Malformation.Int J Mol Sci. 2019 Dec 5;20(24):6144. doi: 10.3390/ijms20246144.
3 VPO1 Modulates Vascular Smooth Muscle Cell Phenotypic Switch by Activating Extracellular Signal-regulated Kinase 1/2 (ERK 1/2) in Abdominal Aortic Aneurysms.J Am Heart Assoc. 2018 Sep 4;7(17):e010069. doi: 10.1161/JAHA.118.010069.
4 Discovery of epigenetically silenced genes in acute myeloid leukemias.Leukemia. 2007 May;21(5):1026-34. doi: 10.1038/sj.leu.2404611. Epub 2007 Mar 1.
5 High expression of PXDN is associated with poor prognosis and promotes proliferation, invasion as well as migration in ovarian cancer.Ann Diagn Pathol. 2018 Jun;34:161-165. doi: 10.1016/j.anndiagpath.2018.03.002. Epub 2018 Mar 14.
6 Germline mosaic transmission of a novel duplication of PXDN and MYT1L to two male half-siblings with autism.Psychiatr Genet. 2012 Jun;22(3):137-40. doi: 10.1097/YPG.0b013e32834dc3f5.
7 Coordination between NADPH oxidase and vascular peroxidase 1 promotes dysfunctions of endothelial progenitor cells in hypoxia-induced pulmonary hypertensive rats.Eur J Pharmacol. 2019 Aug 15;857:172459. doi: 10.1016/j.ejphar.2019.172459. Epub 2019 Jun 16.
8 Peroxidasin and eosinophil peroxidase, but not myeloperoxidase, contribute to renal fibrosis in the murine unilateral ureteral obstruction model.Am J Physiol Renal Physiol. 2019 Feb 1;316(2):F360-F371. doi: 10.1152/ajprenal.00291.2018. Epub 2018 Dec 19.
9 Identification of Novel Variants in LTBP2 and PXDN Using Whole-Exome Sequencing in Developmental and Congenital Glaucoma.PLoS One. 2016 Jul 13;11(7):e0159259. doi: 10.1371/journal.pone.0159259. eCollection 2016.
10 A novel melanoma gene (MG50) encoding the interleukin 1 receptor antagonist and six epitopes recognized by human cytolytic T lymphocytes.Cancer Res. 2000 Nov 15;60(22):6448-56.
11 Vascular peroxidase 1 is a novel regulator of cardiac fibrosis after myocardial infarction.Redox Biol. 2019 Apr;22:101151. doi: 10.1016/j.redox.2019.101151. Epub 2019 Feb 27.
12 Proteomics-Metabolomics Combined Approach Identifies Peroxidasin as a Protector against Metabolic and Oxidative Stress in Prostate Cancer.Int J Mol Sci. 2019 Jun 21;20(12):3046. doi: 10.3390/ijms20123046.
13 Inhibitory Anti-Peroxidasin Antibodies in Pulmonary-Renal Syndromes.J Am Soc Nephrol. 2018 Nov;29(11):2619-2625. doi: 10.1681/ASN.2018050519. Epub 2018 Oct 2.
14 Mechanisms of oxidative stress effects of the NADPH oxidase-ROS-NF-B transduction pathway and VPO1 on patients with chronic obstructive pulmonary disease combined with pulmonary hypertension.Eur Rev Med Pharmacol Sci. 2017 Aug;21(15):3459-3464.
15 Identifying and targeting determinants of melanoma cellular invasion.Oncotarget. 2016 Jul 5;7(27):41186-41202. doi: 10.18632/oncotarget.9227.
16 Perspective on allogeneic melanoma lysates in active specific immunotherapy.Semin Oncol. 1998 Dec;25(6):623-35.
17 Role of vascular peroxidase 1 in senescence of endothelial cells in diabetes rats.Int J Cardiol. 2015 Oct 15;197:182-91. doi: 10.1016/j.ijcard.2015.06.098. Epub 2015 Jun 27.
18 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
19 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
20 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
21 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
22 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
23 Influence of Iron on Cytotoxicity and Gene Expression Profiles Induced by Arsenic in HepG2 Cells. Int J Environ Res Public Health. 2019 Nov 14;16(22):4484. doi: 10.3390/ijerph16224484.
24 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
25 Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul 1;106(1):304-10.
26 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
27 CXCL14 downregulation in human keratinocytes is a potential biomarker for a novel in vitro skin sensitization test. Toxicol Appl Pharmacol. 2020 Jan 1;386:114828. doi: 10.1016/j.taap.2019.114828. Epub 2019 Nov 14.
28 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
29 Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
30 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
31 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
32 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
33 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
34 Chemical stresses fail to mimic the unfolded protein response resulting from luminal load with unfolded polypeptides. J Biol Chem. 2018 Apr 13;293(15):5600-5612.
35 Alternatives for the worse: Molecular insights into adverse effects of bisphenol a and substitutes during human adipocyte differentiation. Environ Int. 2021 Nov;156:106730. doi: 10.1016/j.envint.2021.106730. Epub 2021 Jun 27.
36 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
37 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.