General Information of Drug Off-Target (DOT) (ID: OTGVVXYF)

DOT Name Stanniocalcin-1 (STC1)
Synonyms STC-1
Gene Name STC1
UniProt ID
STC1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF03298
Sequence
MLQNSAVLLVLVISASATHEAEQNDSVSPRKSRVAAQNSAEVVRCLNSALQVGCGAFACL
ENSTCDTDGMYDICKSFLYSAAKFDTQGKAFVKESLKCIANGVTSKVFLAIRRCSTFQRM
IAEVQEECYSKLNVCSIAKRNPEAITEVVQLPNHFSNRYYNRLVRSLLECDEDTVSTIRD
SLMEKIGPNMASLFHILQTDHCAQTHPRADFNRRRTNEPQKLKVLLRNLRGEEDSPSHIK
RTSHESA
Function Stimulates renal phosphate reabsorption, and could therefore prevent hypercalcemia.
Tissue Specificity
Expressed in most tissues, with the highest levels in ovary, prostate, heart, kidney and thyroid. In the kidney, expression is confined to the nephron, specifically in the distal convoluted tubule and in the collecting tubule. Not detected in the brain, liver, spleen, peripheral blood leukocytes and adrenal medulla.

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Paclitaxel DMLB81S Approved Stanniocalcin-1 (STC1) affects the response to substance of Paclitaxel. [40]
DTI-015 DMXZRW0 Approved Stanniocalcin-1 (STC1) affects the response to substance of DTI-015. [41]
Topotecan DMP6G8T Approved Stanniocalcin-1 (STC1) affects the response to substance of Topotecan. [40]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Uric acid DMA1MKT Investigative Stanniocalcin-1 (STC1) affects the abundance of Uric acid. [42]
------------------------------------------------------------------------------------
41 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Stanniocalcin-1 (STC1). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Stanniocalcin-1 (STC1). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Stanniocalcin-1 (STC1). [3]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Stanniocalcin-1 (STC1). [4]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Stanniocalcin-1 (STC1). [5]
Quercetin DM3NC4M Approved Quercetin increases the expression of Stanniocalcin-1 (STC1). [6]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Stanniocalcin-1 (STC1). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Stanniocalcin-1 (STC1). [8]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Stanniocalcin-1 (STC1). [9]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Stanniocalcin-1 (STC1). [10]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Stanniocalcin-1 (STC1). [11]
Marinol DM70IK5 Approved Marinol decreases the expression of Stanniocalcin-1 (STC1). [12]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Stanniocalcin-1 (STC1). [13]
Progesterone DMUY35B Approved Progesterone decreases the expression of Stanniocalcin-1 (STC1). [14]
Panobinostat DM58WKG Approved Panobinostat increases the expression of Stanniocalcin-1 (STC1). [15]
Troglitazone DM3VFPD Approved Troglitazone decreases the expression of Stanniocalcin-1 (STC1). [17]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Stanniocalcin-1 (STC1). [18]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Stanniocalcin-1 (STC1). [17]
Ethanol DMDRQZU Approved Ethanol increases the expression of Stanniocalcin-1 (STC1). [19]
Etoposide DMNH3PG Approved Etoposide increases the expression of Stanniocalcin-1 (STC1). [20]
Dasatinib DMJV2EK Approved Dasatinib decreases the expression of Stanniocalcin-1 (STC1). [21]
Indomethacin DMSC4A7 Approved Indomethacin decreases the expression of Stanniocalcin-1 (STC1). [22]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Stanniocalcin-1 (STC1). [23]
Sorafenib DMS8IFC Approved Sorafenib decreases the expression of Stanniocalcin-1 (STC1). [24]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Stanniocalcin-1 (STC1). [9]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Stanniocalcin-1 (STC1). [25]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Stanniocalcin-1 (STC1). [26]
PD-0325901 DM27D4J Phase 2 PD-0325901 decreases the expression of Stanniocalcin-1 (STC1). [27]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Stanniocalcin-1 (STC1). [28]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Stanniocalcin-1 (STC1). [27]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Stanniocalcin-1 (STC1). [29]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Stanniocalcin-1 (STC1). [30]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Stanniocalcin-1 (STC1). [31]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Stanniocalcin-1 (STC1). [32]
Coumestrol DM40TBU Investigative Coumestrol decreases the expression of Stanniocalcin-1 (STC1). [33]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Stanniocalcin-1 (STC1). [34]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A increases the expression of Stanniocalcin-1 (STC1). [35]
Glyphosate DM0AFY7 Investigative Glyphosate increases the expression of Stanniocalcin-1 (STC1). [36]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of Stanniocalcin-1 (STC1). [37]
U0126 DM31OGF Investigative U0126 decreases the expression of Stanniocalcin-1 (STC1). [38]
1,6-hexamethylene diisocyanate DMLB3RT Investigative 1,6-hexamethylene diisocyanate affects the expression of Stanniocalcin-1 (STC1). [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 41 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the methylation of Stanniocalcin-1 (STC1). [16]
------------------------------------------------------------------------------------

References

1 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
4 Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol. 2018 Jan;92(1):371-381.
5 Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril. 2008 Dec;90(6):2152-64.
6 Hypoxia-inducible factor-1 (HIF-1) pathway activation by quercetin in human lens epithelial cells. Exp Eye Res. 2009 Dec;89(6):995-1002. doi: 10.1016/j.exer.2009.08.011. Epub 2009 Sep 1.
7 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
8 Endoplasmic reticulum stress contributes to arsenic trioxide-induced intrinsic apoptosis in human umbilical and bone marrow mesenchymal stem cells. Environ Toxicol. 2016 Mar;31(3):314-28.
9 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
10 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
11 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
12 THC exposure of human iPSC neurons impacts genes associated with neuropsychiatric disorders. Transl Psychiatry. 2018 Apr 25;8(1):89. doi: 10.1038/s41398-018-0137-3.
13 Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Arch Toxicol. 2018 Jan;92(1):469-485.
14 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
15 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
16 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
17 Transcriptomic analysis of untreated and drug-treated differentiated HepaRG cells over a 2-week period. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):27-35.
18 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
19 Chronic ethanol exposure increases goosecoid (GSC) expression in human embryonic carcinoma cell differentiation. J Appl Toxicol. 2014 Jan;34(1):66-75.
20 Cell death mechanisms of the anti-cancer drug etoposide on human cardiomyocytes isolated from pluripotent stem cells. Arch Toxicol. 2018 Apr;92(4):1507-1524.
21 Dasatinib reverses cancer-associated fibroblasts (CAFs) from primary lung carcinomas to a phenotype comparable to that of normal fibroblasts. Mol Cancer. 2010 Jun 27;9:168.
22 Anti-inflammatory agent indomethacin reduces invasion and alters metabolism in a human breast cancer cell line. Neoplasia. 2007 Mar;9(3):222-35.
23 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
24 Downregulation of stanniocalcin 1 is responsible for sorafenib-induced cardiotoxicity. Toxicol Sci. 2015 Feb;143(2):374-84. doi: 10.1093/toxsci/kfu235. Epub 2014 Nov 3.
25 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
26 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
27 PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. Nature. 2014 Oct 9;514(7521):247-51.
28 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
29 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
30 Low dose of bisphenol a modulates ovarian cancer gene expression profile and promotes epithelial to mesenchymal transition via canonical Wnt pathway. Toxicol Sci. 2018 Aug 1;164(2):527-538.
31 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
32 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
33 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
34 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
35 Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Arch Toxicol. 2012 Apr;86(4):571-89.
36 Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents. Food Chem Toxicol. 2017 Oct;108(Pt A):30-42.
37 Effects of nickel treatment on H3K4 trimethylation and gene expression. PLoS One. 2011 Mar 24;6(3):e17728. doi: 10.1371/journal.pone.0017728.
38 Ovarian steroids, mitogen-activated protein kinases, and/or aspartic proteinases cooperate to control endometrial remodeling by regulating gene expression in the stroma and glands. Endocrinology. 2010 Sep;151(9):4515-26. doi: 10.1210/en.2009-1398. Epub 2010 Jul 21.
39 Gene profiles of THP-1 macrophages after in vitro exposure to respiratory (non-)sensitizing chemicals: identification of discriminating genetic markers and pathway analysis. Toxicol In Vitro. 2009 Sep;23(6):1151-62. doi: 10.1016/j.tiv.2009.06.007. Epub 2009 Jun 13.
40 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.
41 Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006 Jan 10;24(2):274-87. doi: 10.1200/JCO.2005.02.9405. Epub 2005 Dec 19.
42 Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013 Feb;45(2):145-54. doi: 10.1038/ng.2500. Epub 2012 Dec 23.