General Information of Drug Off-Target (DOT) (ID: OTJEO4E8)

DOT Name Malate dehydrogenase, cytoplasmic (MDH1)
Synonyms EC 1.1.1.37; Aromatic alpha-keto acid reductase; KAR; EC 1.1.1.96; Cytosolic malate dehydrogenase
Gene Name MDH1
Related Disease
Pancreatic ductal carcinoma ( )
Alzheimer disease ( )
Creutzfeldt Jacob disease ( )
Dilated cardiomyopathy ( )
Dilated cardiomyopathy 1A ( )
Fatal familial insomnia ( )
Gerstmann-Straussler-Scheinker syndrome ( )
High blood pressure ( )
Matthew-Wood syndrome ( )
Metabolic disorder ( )
Neoplasm ( )
Non-small-cell lung cancer ( )
Pancreatic cancer ( )
Retinitis pigmentosa ( )
Advanced cancer ( )
Schizophrenia ( )
Adult respiratory distress syndrome ( )
Amyotrophic lateral sclerosis ( )
Developmental and epileptic encephalopathy, 88 ( )
UniProt ID
MDHC_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7RM9; 7RRL
EC Number
1.1.1.37; 1.1.1.96
Pfam ID
PF02866 ; PF00056
Sequence
MSEPIRVLVTGAAGQIAYSLLYSIGNGSVFGKDQPIILVLLDITPMMGVLDGVLMELQDC
ALPLLKDVIATDKEDVAFKDLDVAILVGSMPRREGMERKDLLKANVKIFKSQGAALDKYA
KKSVKVIVVGNPANTNCLTASKSAPSIPKENFSCLTRLDHNRAKAQIALKLGVTANDVKN
VIIWGNHSSTQYPDVNHAKVKLQGKEVGVYEALKDDSWLKGEFVTTVQQRGAAVIKARKL
SSAMSAAKAICDHVRDIWFGTPEGEFVSMGVISDGNSYGVPDDLLYSFPVVIKNKTWKFV
EGLPINDFSREKMDLTAKELTEEKESAFEFLSSA
Function
Catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH. Plays essential roles in the malate-aspartate shuttle and the tricarboxylic acid cycle, important in mitochondrial NADH supply for oxidative phosphorylation. Catalyzes the reduction of 2-oxoglutarate to 2-hydroxyglutarate, leading to elevated reactive oxygen species (ROS).
KEGG Pathway
Citrate cycle (TCA cycle) (hsa00020 )
Cysteine and methionine metabolism (hsa00270 )
Pyruvate metabolism (hsa00620 )
Glyoxylate and dicarboxylate metabolism (hsa00630 )
Metabolic pathways (hsa01100 )
Carbon metabolism (hsa01200 )
Proximal tubule bicarbo.te reclamation (hsa04964 )
Reactome Pathway
Gluconeogenesis (R-HSA-70263 )
BioCyc Pathway
MetaCyc:HS00361-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

19 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Pancreatic ductal carcinoma DIS26F9Q Definitive Biomarker [1]
Alzheimer disease DISF8S70 Strong Altered Expression [2]
Creutzfeldt Jacob disease DISCB6RX Strong Biomarker [3]
Dilated cardiomyopathy DISX608J Strong Altered Expression [4]
Dilated cardiomyopathy 1A DIS0RK9Z Strong Altered Expression [4]
Fatal familial insomnia DIS1FL1J Strong Genetic Variation [3]
Gerstmann-Straussler-Scheinker syndrome DISIO6KC Strong Genetic Variation [3]
High blood pressure DISY2OHH Strong Biomarker [5]
Matthew-Wood syndrome DISA7HR7 Strong Biomarker [1]
Metabolic disorder DIS71G5H Strong Biomarker [6]
Neoplasm DISZKGEW Strong Biomarker [7]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [8]
Pancreatic cancer DISJC981 Strong Posttranslational Modification [9]
Retinitis pigmentosa DISCGPY8 Strong Biomarker [10]
Advanced cancer DISAT1Z9 moderate Altered Expression [11]
Schizophrenia DISSRV2N moderate Altered Expression [12]
Adult respiratory distress syndrome DISIJV47 Limited Biomarker [13]
Amyotrophic lateral sclerosis DISF7HVM Limited Genetic Variation [14]
Developmental and epileptic encephalopathy, 88 DISY22AX Limited Unknown [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 19 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Malate dehydrogenase, cytoplasmic (MDH1). [16]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Malate dehydrogenase, cytoplasmic (MDH1). [33]
------------------------------------------------------------------------------------
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [17]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [18]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [19]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [20]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [21]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [22]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [23]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [24]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [25]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [26]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [27]
Clozapine DMFC71L Approved Clozapine decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [28]
Cocaine DMSOX7I Approved Cocaine decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [29]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [30]
Benzatropine DMF7EXL Approved Benzatropine decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [28]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [32]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [26]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [34]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [35]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [36]
D-glucose DMMG2TO Investigative D-glucose increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [37]
Oxalacetic acid DMPZSV1 Investigative Oxalacetic acid increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [37]
malic acid DMU3O5H Investigative malic acid increases the expression of Malate dehydrogenase, cytoplasmic (MDH1). [37]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
Dihydroartemisinin DMBXVMZ Approved Dihydroartemisinin affects the binding of Malate dehydrogenase, cytoplasmic (MDH1). [31]
------------------------------------------------------------------------------------

References

1 MDH1 and MPP7 Regulate Autophagy in Pancreatic Ductal Adenocarcinoma.Cancer Res. 2019 Apr 15;79(8):1884-1898. doi: 10.1158/0008-5472.CAN-18-2553. Epub 2019 Feb 14.
2 Changes of hippocampus proteomic profiles after blueberry extracts supplementation in APP/PS1 transgenic mice.Nutr Neurosci. 2020 Jan;23(1):75-84. doi: 10.1080/1028415X.2018.1471251. Epub 2018 May 21.
3 Evaluation of Human Cerebrospinal Fluid Malate Dehydrogenase 1 as a Marker in Genetic Prion Disease Patients.Biomolecules. 2019 Nov 28;9(12):800. doi: 10.3390/biom9120800.
4 Developmental regulation and cellular distribution of human cytosolic malate dehydrogenase (MDH1).J Cell Biochem. 2005 Mar 1;94(4):763-73. doi: 10.1002/jcb.20343.
5 A custom rat and baboon hypertension gene array to compare experimental models.Exp Biol Med (Maywood). 2012 Jan;237(1):99-110. doi: 10.1258/ebm.2011.011188. Epub 2012 Jan 6.
6 MDH1 deficiency is a metabolic disorder of the malate-aspartate shuttle associated with early onset severe encephalopathy.Hum Genet. 2019 Dec;138(11-12):1247-1257. doi: 10.1007/s00439-019-02063-z. Epub 2019 Sep 19.
7 Cytosolic malate dehydrogenase activity helps support glycolysis in actively proliferating cells and cancer.Oncogene. 2017 Jul 6;36(27):3915-3924. doi: 10.1038/onc.2017.36. Epub 2017 Mar 6.
8 miR-126-5p targets Malate Dehydrogenase 1 in non-small cell lung carcinomas.Biochem Biophys Res Commun. 2018 May 5;499(2):314-320. doi: 10.1016/j.bbrc.2018.03.154. Epub 2018 Mar 26.
9 Arginine Methylation of MDH1 by CARM1 Inhibits Glutamine Metabolism and Suppresses Pancreatic Cancer.Mol Cell. 2016 Nov 17;64(4):673-687. doi: 10.1016/j.molcel.2016.09.028. Epub 2016 Nov 10.
10 Ultra high throughput sequencing excludes MDH1 as candidate gene for RP28-linked retinitis pigmentosa.Mol Vis. 2009 Dec 8;15:2627-33.
11 Consequences of blunting the mevalonate pathway in cancer identified by a pluri-omics approach.Cell Death Dis. 2018 Jul 3;9(7):745. doi: 10.1038/s41419-018-0761-0.
12 Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia.J Psychiatr Res. 2009 Jul;43(11):978-86. doi: 10.1016/j.jpsychires.2008.11.006. Epub 2008 Dec 24.
13 MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome.BMC Med Genomics. 2014 Jul 28;7:46. doi: 10.1186/1755-8794-7-46.
14 Gain of interaction of ALS-linked G93A superoxide dismutase with cytosolic malate dehydrogenase.Neurobiol Dis. 2008 Oct;32(1):133-41. doi: 10.1016/j.nbd.2008.06.010. Epub 2008 Jul 3.
15 Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat Genet. 2017 Apr;49(4):504-510. doi: 10.1038/ng.3789. Epub 2017 Feb 13.
16 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
17 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
18 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
19 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
20 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
21 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
22 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
23 Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS. 2009 Apr;13(2):93-103. doi: 10.1089/omi.2008.0075.
24 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
25 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
26 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
27 Temporal changes in gene expression in the skin of patients treated with isotretinoin provide insight into its mechanism of action. Dermatoendocrinol. 2009 May;1(3):177-87.
28 Cannabidiol Displays Proteomic Similarities to Antipsychotics in Cuprizone-Exposed Human Oligodendrocytic Cell Line MO3.13. Front Mol Neurosci. 2021 May 28;14:673144. doi: 10.3389/fnmol.2021.673144. eCollection 2021.
29 Transcriptional profiling in the human prefrontal cortex: evidence for two activational states associated with cocaine abuse. Pharmacogenomics J. 2003;3(1):27-40.
30 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
31 Untargeted Proteomics and Systems-Based Mechanistic Investigation of Artesunate in Human Bronchial Epithelial Cells. Chem Res Toxicol. 2015 Oct 19;28(10):1903-13. doi: 10.1021/acs.chemrestox.5b00105. Epub 2015 Sep 21.
32 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
33 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
34 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
35 Gene expression changes in primary human nasal epithelial cells exposed to formaldehyde in vitro. Toxicol Lett. 2010 Oct 5;198(2):289-95.
36 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
37 Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure. J Neurochem. 2016 Apr;137(1):76-87. doi: 10.1111/jnc.13545. Epub 2016 Mar 11.