General Information of Drug Off-Target (DOT) (ID: OTLVN68B)

DOT Name 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2)
Synonyms AMPK subunit beta-2
Gene Name PRKAB2
Related Disease
Coronary heart disease ( )
Non-insulin dependent diabetes ( )
Advanced cancer ( )
UniProt ID
AAKB2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2F15; 2V8Q; 2V92; 2V9J; 2Y8L; 2Y8Q; 2YA3; 4CFH; 4EAI; 4EAJ; 4RER; 4REW; 6B2E; 7JHG; 7JHH; 7JIJ; 7M74
Pfam ID
PF16561 ; PF04739
Sequence
MGNTTSDRVSGERHGAKAARSEGAGGHAPGKEHKIMVGSTDDPSVFSLPDSKLPGDKEFV
SWQQDLEDSVKPTQQARPTVIRWSEGGKEVFISGSFNNWSTKIPLIKSHNDFVAILDLPE
GEHQYKFFVDGQWVHDPSEPVVTSQLGTINNLIHVKKSDFEVFDALKLDSMESSETSCRD
LSSSPPGPYGQEMYAFRSEERFKSPPILPPHLLQVILNKDTNISCDPALLPEPNHVMLNH
LYALSIKDSVMVLSATHRYKKKYVTTLLYKPI
Function
Non-catalytic subunit of AMP-activated protein kinase (AMPK), an energy sensor protein kinase that plays a key role in regulating cellular energy metabolism. In response to reduction of intracellular ATP levels, AMPK activates energy-producing pathways and inhibits energy-consuming processes: inhibits protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. AMPK acts via direct phosphorylation of metabolic enzymes, and by longer-term effects via phosphorylation of transcription regulators. Also acts as a regulator of cellular polarity by remodeling the actin cytoskeleton; probably by indirectly activating myosin. Beta non-catalytic subunit acts as a scaffold on which the AMPK complex assembles, via its C-terminus that bridges alpha (PRKAA1 or PRKAA2) and gamma subunits (PRKAG1, PRKAG2 or PRKAG3).
KEGG Pathway
FoxO sig.ling pathway (hsa04068 )
AMPK sig.ling pathway (hsa04152 )
Longevity regulating pathway (hsa04211 )
Longevity regulating pathway - multiple species (hsa04213 )
Apelin sig.ling pathway (hsa04371 )
Tight junction (hsa04530 )
Circadian rhythm (hsa04710 )
Thermogenesis (hsa04714 )
Insulin sig.ling pathway (hsa04910 )
Adipocytokine sig.ling pathway (hsa04920 )
Oxytocin sig.ling pathway (hsa04921 )
Glucagon sig.ling pathway (hsa04922 )
Insulin resistance (hsa04931 )
Non-alcoholic fatty liver disease (hsa04932 )
Alcoholic liver disease (hsa04936 )
Hypertrophic cardiomyopathy (hsa05410 )
Reactome Pathway
Macroautophagy (R-HSA-1632852 )
AMPK inhibits chREBP transcriptional activation activity (R-HSA-163680 )
Carnitine metabolism (R-HSA-200425 )
Activation of PPARGC1A (PGC-1alpha) by phosphorylation (R-HSA-2151209 )
Energy dependent regulation of mTOR by LKB1-AMPK (R-HSA-380972 )
TP53 Regulates Metabolic Genes (R-HSA-5628897 )
Regulation of TP53 Activity through Phosphorylation (R-HSA-6804756 )
Lipophagy (R-HSA-9613354 )
Activation of AMPK downstream of NMDARs (R-HSA-9619483 )
Translocation of SLC2A4 (GLUT4) to the plasma membrane (R-HSA-1445148 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Coronary heart disease DIS5OIP1 Strong Biomarker [1]
Non-insulin dependent diabetes DISK1O5Z Strong Biomarker [2]
Advanced cancer DISAT1Z9 Limited Biomarker [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
23 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [4]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [5]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [6]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [9]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [10]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [11]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [7]
Menadione DMSJDTY Approved Menadione affects the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [9]
Folic acid DMEMBJC Approved Folic acid decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [12]
Testosterone enanthate DMB6871 Approved Testosterone enanthate affects the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [13]
Cidofovir DMA13GD Approved Cidofovir decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [7]
Ifosfamide DMCT3I8 Approved Ifosfamide affects the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [7]
Clodronate DM9Y6X7 Approved Clodronate decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [7]
Ibuprofen DM8VCBE Approved Ibuprofen decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [7]
Adefovir dipivoxil DMMAWY1 Approved Adefovir dipivoxil decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [7]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [14]
PEITC DMOMN31 Phase 2 PEITC increases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [15]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [16]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [17]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [18]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [19]
Coumarin DM0N8ZM Investigative Coumarin affects the phosphorylation of 5'-AMP-activated protein kinase subunit beta-2 (PRKAB2). [19]
------------------------------------------------------------------------------------

References

1 Nutrient sensing pathway genes expression dysregulated in patients with T2DM and coronary artery disease.Diabetes Res Clin Pract. 2019 May;151:39-45. doi: 10.1016/j.diabres.2019.03.036. Epub 2019 Mar 30.
2 Haplotype structures and large-scale association testing of the 5' AMP-activated protein kinase genes PRKAA2, PRKAB1, and PRKAB2 [corrected] with type 2 diabetes.Diabetes. 2006 Mar;55(3):849-55. doi: 10.2337/diabetes.55.03.06.db05-1418.
3 AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours.FEBS J. 2016 Aug;283(16):2987-3001. doi: 10.1111/febs.13698. Epub 2016 Mar 24.
4 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
7 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
11 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
12 Folic acid supplementation dysregulates gene expression in lymphoblastoid cells--implications in nutrition. Biochem Biophys Res Commun. 2011 Sep 9;412(4):688-92. doi: 10.1016/j.bbrc.2011.08.027. Epub 2011 Aug 16.
13 Transcriptional profiling of testosterone-regulated genes in the skeletal muscle of human immunodeficiency virus-infected men experiencing weight loss. J Clin Endocrinol Metab. 2007 Jul;92(7):2793-802. doi: 10.1210/jc.2006-2722. Epub 2007 Apr 17.
14 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
15 Phenethyl isothiocyanate alters the gene expression and the levels of protein associated with cell cycle regulation in human glioblastoma GBM 8401 cells. Environ Toxicol. 2017 Jan;32(1):176-187.
16 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
17 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
18 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
19 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
20 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.