General Information of Drug Off-Target (DOT) (ID: OTSMBXMF)

DOT Name Heterogeneous nuclear ribonucleoprotein F (HNRNPF)
Synonyms hnRNP F; Nucleolin-like protein mcs94-1
Gene Name HNRNPF
Related Disease
Non-insulin dependent diabetes ( )
Bladder cancer ( )
Breast cancer ( )
Breast carcinoma ( )
Glioma ( )
Multiple endocrine neoplasia type 2A ( )
Neoplasm ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Colon cancer ( )
Colon carcinoma ( )
Colorectal neoplasm ( )
High blood pressure ( )
Type-1 diabetes ( )
UniProt ID
HNRPF_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2HGL; 2HGM; 2HGN; 2KFY; 2KG0; 2KG1; 3TFY
Pfam ID
PF00076 ; PF08080
Sequence
MMLGPEGGEGFVVKLRGLPWSCSVEDVQNFLSDCTIHDGAAGVHFIYTREGRQSGEAFVE
LGSEDDVKMALKKDRESMGHRYIEVFKSHRTEMDWVLKHSGPNSADSANDGFVRLRGLPF
GCTKEEIVQFFSGLEIVPNGITLPVDPEGKITGEAFVQFASQELAEKALGKHKERIGHRY
IEVFKSSQEEVRSYSDPPLKFMSVQRPGPYDRPGTARRYIGIVKQAGLERMRPGAYSTGY
GGYEEYSGLSDGYGFTTDLFGRDLSYCLSGMYDHRYGDSEFTVQSTTGHCVHMRGLPYKA
TENDIYNFFSPLNPVRVHIEIGPDGRVTGEADVEFATHEEAVAAMSKDRANMQHRYIELF
LNSTTGASNGAYSSQVMQGMGVSAAQATYSGLESQSVSGCYGAGYSGQNSMGGYD
Function
Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Plays a role in the regulation of alternative splicing events. Binds G-rich sequences in pre-mRNAs and keeps target RNA in an unfolded state.
Tissue Specificity Expressed ubiquitously.
Reactome Pathway
mRNA Splicing - Major Pathway (R-HSA-72163 )
Processing of Capped Intron-Containing Pre-mRNA (R-HSA-72203 )
Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation (R-HSA-8950505 )
FGFR2 alternative splicing (R-HSA-6803529 )

Molecular Interaction Atlas (MIA) of This DOT

17 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Non-insulin dependent diabetes DISK1O5Z Definitive Biomarker [1]
Bladder cancer DISUHNM0 Strong Biomarker [2]
Breast cancer DIS7DPX1 Strong Biomarker [3]
Breast carcinoma DIS2UE88 Strong Biomarker [3]
Glioma DIS5RPEH Strong Biomarker [4]
Multiple endocrine neoplasia type 2A DIS7D3W2 Strong Biomarker [5]
Neoplasm DISZKGEW Strong Biomarker [6]
Thyroid cancer DIS3VLDH Strong Biomarker [7]
Thyroid gland carcinoma DISMNGZ0 Strong Biomarker [7]
Thyroid tumor DISLVKMD Strong Biomarker [7]
Urinary bladder cancer DISDV4T7 Strong Biomarker [2]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [2]
Colon cancer DISVC52G Limited Biomarker [8]
Colon carcinoma DISJYKUO Limited Biomarker [8]
Colorectal neoplasm DISR1UCN Limited Altered Expression [8]
High blood pressure DISY2OHH Limited Biomarker [9]
Type-1 diabetes DIS7HLUB Limited Altered Expression [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
PEITC DMOMN31 Phase 2 Heterogeneous nuclear ribonucleoprotein F (HNRNPF) affects the binding of PEITC. [23]
Sulforaphane DMQY3L0 Investigative Heterogeneous nuclear ribonucleoprotein F (HNRNPF) affects the binding of Sulforaphane. [23]
------------------------------------------------------------------------------------
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [19]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [20]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [21]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [12]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [13]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [14]
Decitabine DMQL8XJ Approved Decitabine increases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [15]
Marinol DM70IK5 Approved Marinol increases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [16]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate decreases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [17]
ACYLINE DM9GRTK Phase 2 ACYLINE increases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [18]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [17]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Heterogeneous nuclear ribonucleoprotein F (HNRNPF). [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 Heterogeneous Nuclear Ribonucleoprotein F Stimulates Sirtuin-1 Gene Expression and Attenuates Nephropathy Progression in Diabetic Mice.Diabetes. 2017 Jul;66(7):1964-1978. doi: 10.2337/db16-1588. Epub 2017 Apr 19.
2 HnRNP-F promotes cell proliferation by regulating TPX2 in bladder cancer.Am J Transl Res. 2019 Nov 15;11(11):7035-7048. eCollection 2019.
3 RNA G-quadruplex secondary structure promotes alternative splicing via the RNA-binding protein hnRNPF.Genes Dev. 2017 Nov 15;31(22):2296-2309. doi: 10.1101/gad.305862.117. Epub 2017 Dec 21.
4 Proteomic screening and identification of microRNA-128 targets in glioma cells.Proteomics. 2015 Aug;15(15):2602-17. doi: 10.1002/pmic.201400128. Epub 2015 May 15.
5 Identification and characterization of a gene at D10S94 in the MEN2A region.Genomics. 1992 Jun;13(2):344-8. doi: 10.1016/0888-7543(92)90251-m.
6 HnRNP-F regulates EMT in bladder cancer by mediating the stabilization of Snail1 mRNA by binding to its 3' UTR.EBioMedicine. 2019 Jul;45:208-219. doi: 10.1016/j.ebiom.2019.06.017. Epub 2019 Jun 18.
7 Hsa-miR-139-5p is a prognostic thyroid cancer marker involved in HNRNPF-mediated alternative splicing.Int J Cancer. 2020 Jan 15;146(2):521-530. doi: 10.1002/ijc.32622. Epub 2019 Aug 28.
8 Altered expression and localization of creatine kinase B, heterogeneous nuclear ribonucleoprotein F, and high mobility group box 1 protein in the nuclear matrix associated with colon cancer.Cancer Res. 2006 Jan 15;66(2):763-9. doi: 10.1158/0008-5472.CAN-05-3771.
9 Tubular Deficiency of Heterogeneous Nuclear Ribonucleoprotein F Elevates Systolic Blood Pressure and Induces Glycosuria in Mice.Sci Rep. 2019 Oct 31;9(1):15765. doi: 10.1038/s41598-019-52323-1.
10 Insulin Inhibits Nrf2 Gene Expression via Heterogeneous Nuclear Ribonucleoprotein F/K in Diabetic Mice.Endocrinology. 2017 Apr 1;158(4):903-919. doi: 10.1210/en.2016-1576.
11 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
12 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
13 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
14 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
15 Gene induction and apoptosis in human hepatocellular carci-noma cells SMMC-7721 exposed to 5-aza-2'-deoxycytidine. Chin Med J (Engl). 2007 Sep 20;120(18):1626-31.
16 Genomic and proteomic analysis of the effects of cannabinoids on normal human astrocytes. Brain Res. 2008 Jan 29;1191:1-11.
17 Comparative proteomics reveals concordant and discordant biochemical effects of caffeine versus epigallocatechin-3-gallate in human endothelial cells. Toxicol Appl Pharmacol. 2019 Sep 1;378:114621. doi: 10.1016/j.taap.2019.114621. Epub 2019 Jun 10.
18 Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res. 2007 May 15;67(10):5033-41.
19 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
20 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
21 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
22 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
23 Identification of potential protein targets of isothiocyanates by proteomics. Chem Res Toxicol. 2011 Oct 17;24(10):1735-43. doi: 10.1021/tx2002806. Epub 2011 Aug 26.