General Information of Drug Off-Target (DOT) (ID: OTSSPF6F)

DOT Name B-cell linker protein (BLNK)
Synonyms
B-cell adapter containing a SH2 domain protein; B-cell adapter containing a Src homology 2 domain protein; Cytoplasmic adapter protein; Src homology 2 domain-containing leukocyte protein of 65 kDa; SLP-65
Gene Name BLNK
Related Disease
Adult lymphoma ( )
Agammaglobulinemia 4, autosomal recessive ( )
Pediatric lymphoma ( )
Acute lymphocytic leukaemia ( )
Agammaglobulinemia ( )
Alzheimer disease ( )
Anaplastic large cell lymphoma ( )
Arthritis ( )
B-cell acute lymphoblastic leukaemia ( )
B-cell lymphoma ( )
Bladder cancer ( )
Bruton-type agammaglobulinemia ( )
Childhood acute lymphoblastic leukemia ( )
Colon cancer ( )
Colon carcinoma ( )
IgA nephropathy ( )
Neoplasm ( )
Progressive multifocal leukoencephalopathy ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Waldenstrom macroglobulinemia ( )
Epstein barr virus infection ( )
Lymphoma ( )
Autosomal agammaglobulinemia ( )
Enterovirus infection ( )
leukaemia ( )
Leukemia ( )
Lymphoid leukemia ( )
Small lymphocytic lymphoma ( )
UniProt ID
BLNK_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
6YLU
Pfam ID
PF00017
Sequence
MDKLNKITVPASQKLRQLQKMVHDIKNNEGGIMNKIKKLKVKAPPSVPRRDYASESPADE
EEQWSDDFDSDYENPDEHSDSEMYVMPAEENADDSYEPPPVEQETRPVHPALPFARGEYI
DNRSSQRHSPPFSKTLPSKPSWPSEKARLTSTLPALTALQKPQVPPKPKGLLEDEADYVV
PVEDNDENYIHPTESSSPPPEKAPMVNRSTKPNSSTPASPPGTASGRNSGAWETKSPPPA
APSPLPRAGKKPTTPLKTTPVASQQNASSVCEEKPIPAERHRGSSHRQEAVQSPVFPPAQ
KQIHQKPIPLPRFTEGGNPTVDGPLPSFSSNSTISEQEAGVLCKPWYAGACDRKSAEEAL
HRSNKDGSFLIRKSSGHDSKQPYTLVVFFNKRVYNIPVRFIEATKQYALGRKKNGEEYFG
SVAEIIRNHQHSPLVLIDSQNNTKDSTRLKYAVKVS
Function
Functions as a central linker protein, downstream of the B-cell receptor (BCR), bridging the SYK kinase to a multitude of signaling pathways and regulating biological outcomes of B-cell function and development. Plays a role in the activation of ERK/EPHB2, MAP kinase p38 and JNK. Modulates AP1 activation. Important for the activation of NF-kappa-B and NFAT. Plays an important role in BCR-mediated PLCG1 and PLCG2 activation and Ca(2+) mobilization and is required for trafficking of the BCR to late endosomes. However, does not seem to be required for pre-BCR-mediated activation of MAP kinase and phosphatidyl-inositol 3 (PI3) kinase signaling. May be required for the RAC1-JNK pathway. Plays a critical role in orchestrating the pro-B cell to pre-B cell transition. May play an important role in BCR-induced B-cell apoptosis.
Tissue Specificity Expressed in B-cell lineage and fibroblast cell lines (at protein level). Highest levels of expression in the spleen, with lower levels in the liver, kidney, pancreas, small intestines and colon.
KEGG Pathway
NF-kappa B sig.ling pathway (hsa04064 )
Osteoclast differentiation (hsa04380 )
B cell receptor sig.ling pathway (hsa04662 )
Epstein-Barr virus infection (hsa05169 )
Primary immunodeficiency (hsa05340 )
Reactome Pathway
Potential therapeutics for SARS (R-HSA-9679191 )
Antigen activates B Cell Receptor (BCR) leading to generation of second messengers (R-HSA-983695 )
Regulation of signaling by CBL (R-HSA-912631 )

Molecular Interaction Atlas (MIA) of This DOT

29 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Adult lymphoma DISK8IZR Definitive Biomarker [1]
Agammaglobulinemia 4, autosomal recessive DIS9X953 Definitive Autosomal recessive [2]
Pediatric lymphoma DIS51BK2 Definitive Biomarker [1]
Acute lymphocytic leukaemia DISPX75S Strong Biomarker [3]
Agammaglobulinemia DISXMS80 Strong Biomarker [4]
Alzheimer disease DISF8S70 Strong Genetic Variation [5]
Anaplastic large cell lymphoma DISP4D1R Strong Altered Expression [6]
Arthritis DIST1YEL Strong Biomarker [4]
B-cell acute lymphoblastic leukaemia DISKLOKC Strong Biomarker [7]
B-cell lymphoma DISIH1YQ Strong Biomarker [8]
Bladder cancer DISUHNM0 Strong Biomarker [9]
Bruton-type agammaglobulinemia DISQ5ZYP Strong Genetic Variation [10]
Childhood acute lymphoblastic leukemia DISJ5D6U Strong Biomarker [11]
Colon cancer DISVC52G Strong Biomarker [12]
Colon carcinoma DISJYKUO Strong Biomarker [12]
IgA nephropathy DISZ8MTK Strong Biomarker [13]
Neoplasm DISZKGEW Strong Altered Expression [14]
Progressive multifocal leukoencephalopathy DISX02WS Strong Biomarker [3]
Urinary bladder cancer DISDV4T7 Strong Biomarker [9]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [9]
Waldenstrom macroglobulinemia DIS9O23I Strong Altered Expression [15]
Epstein barr virus infection DISOO0WT moderate Posttranslational Modification [16]
Lymphoma DISN6V4S moderate Biomarker [1]
Autosomal agammaglobulinemia DISRW8BT Supportive Autosomal dominant [17]
Enterovirus infection DISH2UDP Limited Biomarker [4]
leukaemia DISS7D1V Limited Altered Expression [18]
Leukemia DISNAKFL Limited Altered Expression [18]
Lymphoid leukemia DIS65TYQ Limited Altered Expression [18]
Small lymphocytic lymphoma DIS30POX Limited Biomarker [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 29 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of B-cell linker protein (BLNK). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of B-cell linker protein (BLNK). [25]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of B-cell linker protein (BLNK). [21]
Tretinoin DM49DUI Approved Tretinoin increases the expression of B-cell linker protein (BLNK). [22]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of B-cell linker protein (BLNK). [23]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of B-cell linker protein (BLNK). [24]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of B-cell linker protein (BLNK). [21]
PMID28870136-Compound-48 DMPIM9L Patented PMID28870136-Compound-48 increases the expression of B-cell linker protein (BLNK). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of B-cell linker protein (BLNK). [27]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of B-cell linker protein (BLNK). [28]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of B-cell linker protein (BLNK). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 The SRC family kinase LYN redirects B cell receptor signaling in human SLP65-deficient B cell lymphoma cells.Oncogene. 2006 Aug 17;25(36):5056-62. doi: 10.1038/sj.onc.1209510. Epub 2006 Mar 27.
2 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
3 B Cell Linker Protein (BLNK) Is a Selective Target of Repression by PAX5-PML Protein in the Differentiation Block That Leads to the Development of Acute Lymphoblastic Leukemia.J Biol Chem. 2016 Feb 26;291(9):4723-31. doi: 10.1074/jbc.M115.637835. Epub 2015 Dec 24.
4 Enteroviral Infection in a Patient with BLNK Adaptor Protein Deficiency.J Clin Immunol. 2015 May;35(4):356-60. doi: 10.1007/s10875-015-0164-2. Epub 2015 Apr 17.
5 Vincamine Alleviates Amyloid- 25-35 Peptides-induced Cytotoxicity in PC12 Cells.Pharmacogn Mag. 2017 Jan-Mar;13(49):123-128. doi: 10.4103/0973-1296.196309.
6 The histologic, immunohistochemical, and genetic features of classical Hodgkin lymphoma and anaplastic large cell lymphoma with aberrant T-cell/B-cell antigen expression.Hum Pathol. 2019 Feb;84:309-320. doi: 10.1016/j.humpath.2018.10.003. Epub 2018 Oct 17.
7 Deficiency of the adaptor SLP-65 in pre-B-cell acute lymphoblastic leukaemia.Nature. 2003 May 22;423(6938):452-6. doi: 10.1038/nature01608.
8 The Myc-miR-17-92 axis amplifies B-cell receptor signaling via inhibition of ITIM proteins: a novel lymphomagenic feed-forward loop.Blood. 2013 Dec 19;122(26):4220-9. doi: 10.1182/blood-2012-12-473090. Epub 2013 Oct 29.
9 Angiotensin II type 2 receptor promotes apoptosis and inhibits angiogenesis in bladder cancer.J Exp Clin Cancer Res. 2017 Jun 9;36(1):77. doi: 10.1186/s13046-017-0542-0.
10 Stability and peptide binding specificity of Btk SH2 domain: molecular basis for X-linked agammaglobulinemia.Protein Sci. 2000 Dec;9(12):2377-85. doi: 10.1110/ps.9.12.2377.
11 Expression of the adaptor protein BLNK/SLP-65 in childhood acute lymphoblastic leukemia.Leukemia. 2004 May;18(5):922-5. doi: 10.1038/sj.leu.2403349.
12 2'-benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species.J Biol Chem. 2004 Feb 20;279(8):6911-20. doi: 10.1074/jbc.M309708200. Epub 2003 Dec 3.
13 Increase in B-cell-activation factor (BAFF) and IFN-gamma productions by tonsillar mononuclear cells stimulated with deoxycytidyl-deoxyguanosine oligodeoxynucleotides (CpG-ODN) in patients with IgA nephropathy.Clin Immunol. 2008 Mar;126(3):260-9. doi: 10.1016/j.clim.2007.11.003. Epub 2008 Jan 14.
14 Long Noncoding RNA MIR17HG Promotes Colorectal Cancer Progression via miR-17-5p.Cancer Res. 2019 Oct 1;79(19):4882-4895. doi: 10.1158/0008-5472.CAN-18-3880. Epub 2019 Aug 13.
15 Gene expression profiling of B lymphocytes and plasma cells from Waldenstrm's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals.Leukemia. 2007 Mar;21(3):541-9. doi: 10.1038/sj.leu.2404520. Epub 2007 Jan 25.
16 Epstein-Barr virus latent membrane protein 2A (LMP2A) employs the SLP-65 signaling module.J Exp Med. 2001 Aug 6;194(3):255-64. doi: 10.1084/jem.194.3.255.
17 An essential role for BLNK in human B cell development. Science. 1999 Dec 3;286(5446):1954-7. doi: 10.1126/science.286.5446.1954.
18 SLP65 deficiency results in perpetual V(D)J recombinase activity in pre-B-lymphoblastic leukemia and B-cell lymphoma cells.Oncogene. 2006 Aug 24;25(37):5180-6. doi: 10.1038/sj.onc.1209520. Epub 2006 Apr 24.
19 Constitutive Phosphorylation of STAT3 by the CK2-BLNK-CD5 Complex.Mol Cancer Res. 2017 May;15(5):610-618. doi: 10.1158/1541-7786.MCR-16-0291. Epub 2017 Jan 27.
20 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
21 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
22 Effect of retinoic acid on gene expression in human conjunctival epithelium: secretory phospholipase A2 mediates retinoic acid induction of MUC16. Invest Ophthalmol Vis Sci. 2005 Nov;46(11):4050-61.
23 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
24 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
25 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
26 Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation. Respir Res. 2005 Aug 8;6(1):89. doi: 10.1186/1465-9921-6-89.
27 Comparative Analysis of Transcriptomic Changes including mRNA and microRNA Expression Induced by the Xenoestrogens Zearalenone and Bisphenol A in Human Ovarian Cells. Toxins (Basel). 2023 Feb 9;15(2):140. doi: 10.3390/toxins15020140.
28 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
29 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.