General Information of Drug Off-Target (DOT) (ID: OTWJENAZ)

DOT Name Agrin (AGRN)
Gene Name AGRN
Related Disease
Thyroid gland papillary carcinoma ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Alzheimer disease ( )
Congenital myasthenic syndrome ( )
Congenital myasthenic syndrome 8 ( )
Fetal akinesia deformation sequence 1 ( )
Lung adenocarcinoma ( )
Obsolete presynaptic congenital myasthenic syndrome ( )
Postsynaptic congenital myasthenic syndrome ( )
UniProt ID
AGRIN_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
8S9P
Pfam ID
PF00008 ; PF00050 ; PF07648 ; PF00053 ; PF00054 ; PF03146 ; PF01390
Sequence
MAGRSHPGPLRPLLPLLVVAACVLPGAGGTCPERALERREEEANVVLTGTVEEILNVDPV
QHTYSCKVRVWRYLKGKDLVARESLLDGGNKVVISGFGDPLICDNQVSTGDTRIFFVNPA
PPYLWPAHKNELMLNSSLMRITLRNLEEVEFCVEDKPGTHFTPVPPTPPDACRGMLCGFG
AVCEPNAEGPGRASCVCKKSPCPSVVAPVCGSDASTYSNECELQRAQCSQQRRIRLLSRG
PCGSRDPCSNVTCSFGSTCARSADGLTASCLCPATCRGAPEGTVCGSDGADYPGECQLLR
RACARQENVFKKFDGPCDPCQGALPDPSRSCRVNPRTRRPEMLLRPESCPARQAPVCGDD
GVTYENDCVMGRSGAARGLLLQKVRSGQCQGRDQCPEPCRFNAVCLSRRGRPRCSCDRVT
CDGAYRPVCAQDGRTYDSDCWRQQAECRQQRAIPSKHQGPCDQAPSPCLGVQCAFGATCA
VKNGQAACECLQACSSLYDPVCGSDGVTYGSACELEATACTLGREIQVARKGPCDRCGQC
RFGALCEAETGRCVCPSECVALAQPVCGSDGHTYPSECMLHVHACTHQISLHVASAGPCE
TCGDAVCAFGAVCSAGQCVCPRCEHPPPGPVCGSDGVTYGSACELREAACLQQTQIEEAR
AGPCEQAECGSGGSGSGEDGDCEQELCRQRGGIWDEDSEDGPCVCDFSCQSVPGSPVCGS
DGVTYSTECELKKARCESQRGLYVAAQGACRGPTFAPLPPVAPLHCAQTPYGCCQDNITA
ARGVGLAGCPSACQCNPHGSYGGTCDPATGQCSCRPGVGGLRCDRCEPGFWNFRGIVTDG
RSGCTPCSCDPQGAVRDDCEQMTGLCSCKPGVAGPKCGQCPDGRALGPAGCEADASAPAT
CAEMRCEFGARCVEESGSAHCVCPMLTCPEANATKVCGSDGVTYGNECQLKTIACRQGLQ
ISIQSLGPCQEAVAPSTHPTSASVTVTTPGLLLSQALPAPPGALPLAPSSTAHSQTTPPP
SSRPRTTASVPRTTVWPVLTVPPTAPSPAPSLVASAFGESGSTDGSSDEELSGDQEASGG
GSGGLEPLEGSSVATPGPPVERASCYNSALGCCSDGKTPSLDAEGSNCPATKVFQGVLEL
EGVEGQELFYTPEMADPKSELFGETARSIESTLDDLFRNSDVKKDFRSVRLRDLGPGKSV
RAIVDVHFDPTTAFRAPDVARALLRQIQVSRRRSLGVRRPLQEHVRFMDFDWFPAFITGA
TSGAIAAGATARATTASRLPSSAVTPRAPHPSHTSQPVAKTTAAPTTRRPPTTAPSRVPG
RRPPAPQQPPKPCDSQPCFHGGTCQDWALGGGFTCSCPAGRGGAVCEKVLGAPVPAFEGR
SFLAFPTLRAYHTLRLALEFRALEPQGLLLYNGNARGKDFLALALLDGRVQLRFDTGSGP
AVLTSAVPVEPGQWHRLELSRHWRRGTLSVDGETPVLGESPSGTDGLNLDTDLFVGGVPE
DQAAVALERTFVGAGLRGCIRLLDVNNQRLELGIGPGAATRGSGVGECGDHPCLPNPCHG
GAPCQNLEAGRFHCQCPPGRVGPTCADEKSPCQPNPCHGAAPCRVLPEGGAQCECPLGRE
GTFCQTASGQDGSGPFLADFNGFSHLELRGLHTFARDLGEKMALEVVFLARGPSGLLLYN
GQKTDGKGDFVSLALRDRRLEFRYDLGKGAAVIRSREPVTLGAWTRVSLERNGRKGALRV
GDGPRVLGESPKSRKVPHTVLNLKEPLYVGGAPDFSKLARAAAVSSGFDGAIQLVSLGGR
QLLTPEHVLRQVDVTSFAGHPCTRASGHPCLNGASCVPREAAYVCLCPGGFSGPHCEKGL
VEKSAGDVDTLAFDGRTFVEYLNAVTESELANEIPVPETLDSGALHSEKALQSNHFELSL
RTEATQGLVLWSGKATERADYVALAIVDGHLQLSYNLGSQPVVLRSTVPVNTNRWLRVVA
HREQREGSLQVGNEAPVTGSSPLGATQLDTDGALWLGGLPELPVGPALPKAYGTGFVGCL
RDVVVGRHPLHLLEDAVTKPELRPCPTP
Function
[Isoform 1]: Heparan sulfate basal lamina glycoprotein that plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ) and directs key events in postsynaptic differentiation. Component of the AGRN-LRP4 receptor complex that induces the phosphorylation and activation of MUSK. The activation of MUSK in myotubes induces the formation of NMJ by regulating different processes including the transcription of specific genes and the clustering of AChR in the postsynaptic membrane. Calcium ions are required for maximal AChR clustering. AGRN function in neurons is highly regulated by alternative splicing, glycan binding and proteolytic processing. Modulates calcium ion homeostasis in neurons, specifically by inducing an increase in cytoplasmic calcium ions. Functions differentially in the central nervous system (CNS) by inhibiting the alpha(3)-subtype of Na+/K+-ATPase and evoking depolarization at CNS synapses. This secreted isoform forms a bridge, after release from motor neurons, to basal lamina through binding laminin via the NtA domain.; [Isoform 2]: Transmembrane form that is the predominate form in neurons of the brain, induces dendritic filopodia and synapse formation in mature hippocampal neurons in large part due to the attached glycosaminoglycan chains and the action of Rho-family GTPases.; Isoform 1, isoform 4 and isoform 5: neuron-specific (z+) isoforms that contain C-terminal insertions of 8-19 AA are potent activators of AChR clustering. Isoform 5, agrin (z+8), containing the 8-AA insert, forms a receptor complex in myotubules containing the neuronal AGRN, the muscle-specific kinase MUSK and LRP4, a member of the LDL receptor family. The splicing factors, NOVA1 and NOVA2, regulate AGRN splicing and production of the 'z' isoforms.; Isoform 3 and isoform 6: lack any 'z' insert, are muscle-specific and may be involved in endothelial cell differentiation.; [Agrin N-terminal 110 kDa subunit]: Is involved in regulation of neurite outgrowth probably due to the presence of the glycosaminoglcan (GAG) side chains of heparan and chondroitin sulfate attached to the Ser/Thr- and Gly/Ser-rich regions. Also involved in modulation of growth factor signaling; [Agrin C-terminal 22 kDa fragment]: This released fragment is important for agrin signaling and to exert a maximal dendritic filopodia-inducing effect. All 'z' splice variants (z+) of this fragment also show an increase in the number of filopodia.
Tissue Specificity
Expressed in basement membranes of lung and kidney. Muscle- and neuron-specific isoforms are found. Isoforms (y+) with the 4 AA insert and (z+8) isoforms with the 8 AA insert are all neuron-specific. Isoforms (z+11) are found in both neuronal and non-neuronal tissues.
KEGG Pathway
ECM-receptor interaction (hsa04512 )
Cytoskeleton in muscle cells (hsa04820 )
Reactome Pathway
HS-GAG biosynthesis (R-HSA-2022928 )
HS-GAG degradation (R-HSA-2024096 )
Integrin cell surface interactions (R-HSA-216083 )
Non-integrin membrane-ECM interactions (R-HSA-3000171 )
ECM proteoglycans (R-HSA-3000178 )
Defective B4GALT7 causes EDS, progeroid type (R-HSA-3560783 )
Defective B3GAT3 causes JDSSDHD (R-HSA-3560801 )
Defective EXT2 causes exostoses 2 (R-HSA-3656237 )
Defective EXT1 causes exostoses 1, TRPS2 and CHDS (R-HSA-3656253 )
NCAM1 interactions (R-HSA-419037 )
Defective B3GALT6 causes EDSP2 and SEMDJL1 (R-HSA-4420332 )
Attachment and Entry (R-HSA-9694614 )
Retinoid metabolism and transport (R-HSA-975634 )
A tetrasaccharide linker sequence is required for GAG synthesis (R-HSA-1971475 )

Molecular Interaction Atlas (MIA) of This DOT

10 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Thyroid gland papillary carcinoma DIS48YMM Definitive Altered Expression [1]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Alzheimer disease DISF8S70 Strong Altered Expression [4]
Congenital myasthenic syndrome DISJLG2T Strong Genetic Variation [5]
Congenital myasthenic syndrome 8 DISICPPN Strong Autosomal recessive [6]
Fetal akinesia deformation sequence 1 DISKDI9L Strong Biomarker [5]
Lung adenocarcinoma DISD51WR Strong Biomarker [7]
Obsolete presynaptic congenital myasthenic syndrome DISCATK3 Supportive Autosomal dominant [8]
Postsynaptic congenital myasthenic syndrome DIS92VN2 Supportive Autosomal recessive [8]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
4 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Agrin (AGRN). [9]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Agrin (AGRN). [12]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene affects the methylation of Agrin (AGRN). [19]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Agrin (AGRN). [21]
------------------------------------------------------------------------------------
20 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Agrin (AGRN). [10]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Agrin (AGRN). [10]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Agrin (AGRN). [11]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Agrin (AGRN). [13]
Selenium DM25CGV Approved Selenium increases the expression of Agrin (AGRN). [14]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Agrin (AGRN). [15]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Agrin (AGRN). [16]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the expression of Agrin (AGRN). [17]
Etoposide DMNH3PG Approved Etoposide increases the expression of Agrin (AGRN). [18]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Agrin (AGRN). [10]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Agrin (AGRN). [10]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Agrin (AGRN). [10]
Daunorubicin DMQUSBT Approved Daunorubicin increases the expression of Agrin (AGRN). [18]
Camptothecin DM6CHNJ Phase 3 Camptothecin increases the expression of Agrin (AGRN). [18]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Agrin (AGRN). [14]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Agrin (AGRN). [20]
PMID27336223-Compound-5 DM6E50A Patented PMID27336223-Compound-5 decreases the expression of Agrin (AGRN). [17]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of Agrin (AGRN). [22]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Agrin (AGRN). [23]
biochanin A DM0HPWY Investigative biochanin A decreases the expression of Agrin (AGRN). [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Drug(s)

References

1 Integrated analysis of fine-needle-aspiration cystic fluid proteome, cancer cell secretome, and public transcriptome datasets for papillary thyroid cancer biomarker discovery.Oncotarget. 2018 Jan 4;9(15):12079-12100. doi: 10.18632/oncotarget.23951. eCollection 2018 Feb 23.
2 Discovery of epigenetically silenced genes in acute myeloid leukemias.Leukemia. 2007 May;21(5):1026-34. doi: 10.1038/sj.leu.2404611. Epub 2007 Mar 1.
3 Oncogenic Properties of NEAT1 in Prostate Cancer Cells Depend on the CDC5L-AGRN Transcriptional Regulation Circuit.Cancer Res. 2018 Aug 1;78(15):4138-4149. doi: 10.1158/0008-5472.CAN-18-0688. Epub 2018 Jun 5.
4 Amyloid beta induces cellular relocalization and production of agrin and glypican-1.Brain Res. 2009 Mar 13;1260:38-46. doi: 10.1016/j.brainres.2008.12.063. Epub 2009 Jan 7.
5 Null variants in AGRN cause lethal fetal akinesia deformation sequence.Clin Genet. 2020 Apr;97(4):634-638. doi: 10.1111/cge.13677. Epub 2019 Dec 11.
6 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
7 Identification of a novel glycolysis-related gene signature that can predict the survival of patients with lung adenocarcinoma.Cell Cycle. 2019 Mar;18(5):568-579. doi: 10.1080/15384101.2019.1578146. Epub 2019 Feb 17.
8 LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (z-) agrin. Hum Genet. 2012 Jul;131(7):1123-35. doi: 10.1007/s00439-011-1132-4. Epub 2011 Dec 29.
9 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
10 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
11 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
12 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
13 Zoledronate dysregulates fatty acid metabolism in renal tubular epithelial cells to induce nephrotoxicity. Arch Toxicol. 2018 Jan;92(1):469-485.
14 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
15 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
16 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
17 PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J Exp Med. 2006 Oct 2;203(10):2351-62.
18 Characterization of DNA reactive and non-DNA reactive anticancer drugs by gene expression profiling. Mutat Res. 2007 Jun 1;619(1-2):16-29. doi: 10.1016/j.mrfmmm.2006.12.007. Epub 2007 Feb 8.
19 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
20 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
21 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
22 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
23 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
24 Mechanisms of the growth inhibitory effects of the isoflavonoid biochanin A on LNCaP cells and xenografts. Prostate. 2002 Aug 1;52(3):201-12.