General Information of Drug Off-Target (DOT) (ID: OTXTJQPC)

DOT Name Steryl-sulfatase (STS)
Synonyms EC 3.1.6.2; Arylsulfatase C; ASC; Estrone sulfatase; Steroid sulfatase; Steryl-sulfate sulfohydrolase
Gene Name STS
Related Disease
Recessive X-linked ichthyosis ( )
UniProt ID
STS_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1P49; 8EG3
EC Number
3.1.6.2
Pfam ID
PF00884 ; PF14707
Sequence
MPLRKMKIPFLLLFFLWEAESHAASRPNIILVMADDLGIGDPGCYGNKTIRTPNIDRLAS
GGVKLTQHLAASPLCTPSRAAFMTGRYPVRSGMASWSRTGVFLFTASSGGLPTDEITFAK
LLKDQGYSTALIGKWHLGMSCHSKTDFCHHPLHHGFNYFYGISLTNLRDCKPGEGSVFTT
GFKRLVFLPLQIVGVTLLTLAALNCLGLLHVPLGVFFSLLFLAALILTLFLGFLHYFRPL
NCFMMRNYEIIQQPMSYDNLTQRLTVEAAQFIQRNTETPFLLVLSYLHVHTALFSSKDFA
GKSQHGVYGDAVEEMDWSVGQILNLLDELRLANDTLIYFTSDQGAHVEEVSSKGEIHGGS
NGIYKGGKANNWEGGIRVPGILRWPRVIQAGQKIDEPTSNMDIFPTVAKLAGAPLPEDRI
IDGRDLMPLLEGKSQRSDHEFLFHYCNAYLNAVRWHPQNSTSIWKAFFFTPNFNPVGSNG
CFATHVCFCFGSYVTHHDPPLLFDISKDPRERNPLTPASEPRFYEILKVMQEAADRHTQT
LPEVPDQFSWNNFLWKPWLQLCCPSTGLSCQCDREKQDKRLSR
Function Catalyzes the conversion of sulfated steroid precursors, such as dehydroepiandrosterone sulfate (DHEA-S) and estrone sulfate to the free steroid.
KEGG Pathway
Steroid hormone biosynthesis (hsa00140 )
Metabolic pathways (hsa01100 )
Reactome Pathway
Metabolism of steroid hormones (R-HSA-196071 )
Glycosphingolipid catabolism (R-HSA-9840310 )
The activation of arylsulfatases (R-HSA-1663150 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Recessive X-linked ichthyosis DISZY56W Definitive X-linked [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Estrone DM5T6US Approved Steryl-sulfatase (STS) increases the chemical synthesis of Estrone. [28]
Prasterone DM67VKL Approved Steryl-sulfatase (STS) increases the chemical synthesis of Prasterone. [28]
[3H]estrone-3-sulphate DMGPF0N Investigative Steryl-sulfatase (STS) decreases the sulfation of [3H]estrone-3-sulphate. [12]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Dehydroepiandrosterone sulfate DM4Q80H Approved Steryl-sulfatase (STS) affects the metabolism of Dehydroepiandrosterone sulfate. [28]
Equilenin DMHO56W Investigative Steryl-sulfatase (STS) increases the metabolism of Equilenin. [15]
------------------------------------------------------------------------------------
38 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Steryl-sulfatase (STS). [2]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Steryl-sulfatase (STS). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Steryl-sulfatase (STS). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Steryl-sulfatase (STS). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Steryl-sulfatase (STS). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Steryl-sulfatase (STS). [7]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Steryl-sulfatase (STS). [8]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Steryl-sulfatase (STS). [9]
Demecolcine DMCZQGK Approved Demecolcine decreases the expression of Steryl-sulfatase (STS). [10]
Bortezomib DMNO38U Approved Bortezomib decreases the expression of Steryl-sulfatase (STS). [11]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the activity of Steryl-sulfatase (STS). [12]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Steryl-sulfatase (STS). [9]
Diclofenac DMPIHLS Approved Diclofenac increases the expression of Steryl-sulfatase (STS). [9]
Piroxicam DMTK234 Approved Piroxicam increases the expression of Steryl-sulfatase (STS). [9]
DTI-015 DMXZRW0 Approved DTI-015 increases the expression of Steryl-sulfatase (STS). [13]
Alitretinoin DMME8LH Approved Alitretinoin increases the activity of Steryl-sulfatase (STS). [14]
Prednisolone DMQ8FR2 Approved Prednisolone increases the expression of Steryl-sulfatase (STS). [9]
Methylprednisolone DM4BDON Approved Methylprednisolone increases the expression of Steryl-sulfatase (STS). [9]
Phosphate DMUXQG7 Approved Phosphate decreases the activity of Steryl-sulfatase (STS). [15]
Danazol DML8KTN Approved Danazol decreases the activity of Steryl-sulfatase (STS). [16]
Tazarotene DM8SMD1 Approved Tazarotene increases the activity of Steryl-sulfatase (STS). [14]
Curcumin DMQPH29 Phase 3 Curcumin decreases the expression of Steryl-sulfatase (STS). [17]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Steryl-sulfatase (STS). [18]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the expression of Steryl-sulfatase (STS). [19]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Steryl-sulfatase (STS). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Steryl-sulfatase (STS). [22]
IRX-5183 DMCED9U Phase 1 IRX-5183 increases the activity of Steryl-sulfatase (STS). [14]
PMID27336223-Compound-5 DM6E50A Patented PMID27336223-Compound-5 increases the activity of Steryl-sulfatase (STS). [14]
Torcetrapib DMDHYM7 Discontinued in Phase 2 Torcetrapib increases the expression of Steryl-sulfatase (STS). [23]
HE2100 DMCP2KH Discontinued in Phase 1 HE2100 decreases the activity of Steryl-sulfatase (STS). [16]
MG-132 DMKA2YS Preclinical MG-132 decreases the expression of Steryl-sulfatase (STS). [24]
ZK-119010 DMKFYDE Terminated ZK-119010 decreases the activity of Steryl-sulfatase (STS). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Steryl-sulfatase (STS). [26]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Steryl-sulfatase (STS). [10]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Steryl-sulfatase (STS). [27]
TTNPB DMSABD0 Investigative TTNPB increases the activity of Steryl-sulfatase (STS). [14]
Nitrocatechol sulfate DMGUNIL Investigative Nitrocatechol sulfate decreases the activity of Steryl-sulfatase (STS). [15]
ZK-164015 DMROWV8 Investigative ZK-164015 decreases the activity of Steryl-sulfatase (STS). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 38 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Steryl-sulfatase (STS). [21]
------------------------------------------------------------------------------------

References

1 Cloning and expression of steroid sulfatase cDNA and the frequent occurrence of deletions in STS deficiency: implications for X-Y interchange. Cell. 1987 May 22;49(4):443-54. doi: 10.1016/0092-8674(87)90447-8.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
9 Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.
10 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
11 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
12 Stilbene-based inhibitors of estrone sulfatase with a dual mode of action in human breast cancer cells. Arch Pharm (Weinheim). 2004 Dec;337(12):634-44. doi: 10.1002/ardp.200400904.
13 Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. J Neurooncol. 2005 Jul;73(3):189-98.
14 Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARalpha and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. J Cell Biochem. 2006 Feb 1;97(2):327-50. doi: 10.1002/jcb.20579.
15 Simultaneous azo-coupling method for an estrogen sulfatase in human tissues. Histochemistry. 1983;78(2):241-9. doi: 10.1007/BF00489502.
16 Synthesis and steroid sulphatase inhibitory activity of C19- and C21-steroidal derivatives bearing a benzyl-inhibiting group. Eur J Med Chem. 2001 Jul-Aug;36(7-8):659-71. doi: 10.1016/s0223-5234(01)01262-4.
17 Gene-expression profiling during curcumin-induced apoptosis reveals downregulation of CXCR4. Exp Hematol. 2007 Jan;35(1):84-95.
18 Dose- and time-dependent transcriptional response of Ishikawa cells exposed to genistein. Toxicol Sci. 2016 May;151(1):71-87.
19 Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res. 2006 Jul 15;66(14):7334-40.
20 Hepatic steroid sulfatase critically determines estrogenic activities of conjugated equine estrogens in human cells in vitro and in mice. J Biol Chem. 2019 Aug 9;294(32):12112-12121. doi: 10.1074/jbc.RA119.009181. Epub 2019 Jun 19.
21 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
22 BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood. 2012 Oct 4;120(14):2843-52.
23 Clarifying off-target effects for torcetrapib using network pharmacology and reverse docking approach. BMC Syst Biol. 2012 Dec 10;6:152.
24 Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II. Toxicol Lett. 2013 Nov 25;223(2):109-15. doi: 10.1016/j.toxlet.2013.09.006. Epub 2013 Sep 18.
25 Sulfamoyloxy-substituted 2-phenylindoles: antiestrogen-based inhibitors of the steroid sulfatase in human breast cancer cells. Bioorg Med Chem. 2002 Dec;10(12):3941-53. doi: 10.1016/s0968-0896(02)00306-1.
26 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
27 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
28 Steroid signalling in the ovarian surface epithelium. Trends Endocrinol Metab. 2005 Sep;16(7):327-33.