General Information of Drug Off-Target (DOT) (ID: OTYYFE7K)

DOT Name Eukaryotic initiation factor 4A-III (EIF4A3)
Synonyms
eIF-4A-III; eIF4A-III; EC 3.6.4.13; ATP-dependent RNA helicase DDX48; ATP-dependent RNA helicase eIF4A-3; DEAD box protein 48; Eukaryotic initiation factor 4A-like NUK-34; Eukaryotic translation initiation factor 4A isoform 3; Nuclear matrix protein 265; NMP 265; hNMP 265
Gene Name EIF4A3
Related Disease
Coronary heart disease ( )
Gastric neoplasm ( )
Richieri Costa-Pereira syndrome ( )
Carcinoma of esophagus ( )
Clubfoot ( )
Congenital deformities of limbs ( )
Esophageal cancer ( )
Gastric cancer ( )
Intellectual disability ( )
Isolated Pierre-Robin syndrome ( )
Myocardial infarction ( )
Neoplasm ( )
Neoplasm of esophagus ( )
Non-small-cell lung cancer ( )
Pancreatic tumour ( )
Stomach cancer ( )
Acrofacial dysostosis ( )
Cervical carcinoma ( )
Choanal atresia-hearing loss-cardiac defects-craniofacial dysmorphism syndrome ( )
Hirschsprung disease ( )
Hepatocellular carcinoma ( )
Advanced cancer ( )
Bone osteosarcoma ( )
Colorectal carcinoma ( )
Glioblastoma multiforme ( )
Osteosarcoma ( )
Squamous cell carcinoma ( )
Thyroid cancer ( )
Thyroid gland carcinoma ( )
Thyroid tumor ( )
UniProt ID
IF4A3_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2HXY; 2HYI; 2J0Q; 2J0S; 2J0U; 2XB2; 3EX7; 4C9B; 5MQF; 5XJC; 5YZG; 6ICZ; 6QDV; 6YVH; 7A5P; 7W59; 7W5A; 7W5B; 7ZNJ; 8C6J
EC Number
3.6.4.13
Pfam ID
PF00270 ; PF00271
Sequence
MATTATMATSGSARKRLLKEEDMTKVEFETSEEVDVTPTFDTMGLREDLLRGIYAYGFEK
PSAIQQRAIKQIIKGRDVIAQSQSGTGKTATFSISVLQCLDIQVRETQALILAPTRELAV
QIQKGLLALGDYMNVQCHACIGGTNVGEDIRKLDYGQHVVAGTPGRVFDMIRRRSLRTRA
IKMLVLDEADEMLNKGFKEQIYDVYRYLPPATQVVLISATLPHEILEMTNKFMTDPIRIL
VKRDELTLEGIKQFFVAVEREEWKFDTLCDLYDTLTITQAVIFCNTKRKVDWLTEKMREA
NFTVSSMHGDMPQKERESIMKEFRSGASRVLISTDVWARGLDVPQVSLIINYDLPNNREL
YIHRIGRSGRYGRKGVAINFVKNDDIRILRDIEQYYSTQIDEMPMNVADLI
Function
ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Its RNA-dependent ATPase and RNA-helicase activities are induced by CASC3, but abolished in presence of the MAGOH-RBM8A heterodimer, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The inhibition of ATPase activity by the MAGOH-RBM8A heterodimer increases the RNA-binding affinity of the EJC. Involved in translational enhancement of spliced mRNAs after formation of the 80S ribosome complex. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Shows higher affinity for single-stranded RNA in an ATP-bound core EJC complex than after the ATP is hydrolyzed. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly. Involved in craniofacial development.
Tissue Specificity Ubiquitously expressed.
KEGG Pathway
Nucleocytoplasmic transport (hsa03013 )
mR. surveillance pathway (hsa03015 )
Spliceosome (hsa03040 )
Reactome Pathway
Transport of Mature mRNA derived from an Intron-Containing Transcript (R-HSA-159236 )
Deadenylation of mRNA (R-HSA-429947 )
mRNA Splicing - Major Pathway (R-HSA-72163 )
mRNA 3'-end processing (R-HSA-72187 )
RNA Polymerase II Transcription Termination (R-HSA-73856 )
Regulation of expression of SLITs and ROBOs (R-HSA-9010553 )
Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) (R-HSA-975957 )
M-decay (R-HSA-9820841 )
Z-decay (R-HSA-9820865 )
ISG15 antiviral mechanism (R-HSA-1169408 )

Molecular Interaction Atlas (MIA) of This DOT

30 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Coronary heart disease DIS5OIP1 Definitive Altered Expression [1]
Gastric neoplasm DISOKN4Y Definitive Altered Expression [2]
Richieri Costa-Pereira syndrome DISDQOSK Definitive Autosomal recessive [3]
Carcinoma of esophagus DISS6G4D Strong Biomarker [4]
Clubfoot DISLXT4S Strong Biomarker [5]
Congenital deformities of limbs DISP4N1Q Strong Genetic Variation [6]
Esophageal cancer DISGB2VN Strong Altered Expression [7]
Gastric cancer DISXGOUK Strong Altered Expression [8]
Intellectual disability DISMBNXP Strong Biomarker [9]
Isolated Pierre-Robin syndrome DISVEHG7 Strong Biomarker [10]
Myocardial infarction DIS655KI Strong Biomarker [11]
Neoplasm DISZKGEW Strong Biomarker [12]
Neoplasm of esophagus DISOLKAQ Strong Altered Expression [7]
Non-small-cell lung cancer DIS5Y6R9 Strong Altered Expression [13]
Pancreatic tumour DIS3U0LK Strong Biomarker [14]
Stomach cancer DISKIJSX Strong Altered Expression [8]
Acrofacial dysostosis DISNBM5T moderate Biomarker [10]
Cervical carcinoma DIST4S00 moderate Biomarker [15]
Choanal atresia-hearing loss-cardiac defects-craniofacial dysmorphism syndrome DISI9JIG moderate Biomarker [10]
Hirschsprung disease DISUUSM1 moderate Altered Expression [16]
Hepatocellular carcinoma DIS0J828 Disputed Altered Expression [17]
Advanced cancer DISAT1Z9 Limited Biomarker [18]
Bone osteosarcoma DIST1004 Limited Biomarker [19]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [18]
Glioblastoma multiforme DISK8246 Limited Biomarker [20]
Osteosarcoma DISLQ7E2 Limited Biomarker [19]
Squamous cell carcinoma DISQVIFL Limited Biomarker [21]
Thyroid cancer DIS3VLDH Limited Biomarker [22]
Thyroid gland carcinoma DISMNGZ0 Limited Biomarker [22]
Thyroid tumor DISLVKMD Limited Biomarker [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Eukaryotic initiation factor 4A-III (EIF4A3). [23]
TAK-243 DM4GKV2 Phase 1 TAK-243 decreases the sumoylation of Eukaryotic initiation factor 4A-III (EIF4A3). [30]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the phosphorylation of Eukaryotic initiation factor 4A-III (EIF4A3). [31]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Eukaryotic initiation factor 4A-III (EIF4A3). [32]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of Eukaryotic initiation factor 4A-III (EIF4A3). [31]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [24]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [25]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [26]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [27]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [28]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [29]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [33]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [34]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Eukaryotic initiation factor 4A-III (EIF4A3). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 FAL1 regulates endothelial cell proliferation in diabetic arteriosclerosis through PTEN/AKT pathway.Eur Rev Med Pharmacol Sci. 2018 Oct;22(19):6492-6499. doi: 10.26355/eurrev_201810_16063.
2 The NMD mRNA surveillance pathway downregulates aberrant E-cadherin transcripts in gastric cancer cells and in CDH1 mutation carriers.Oncogene. 2008 Jul 10;27(30):4255-60. doi: 10.1038/onc.2008.62. Epub 2008 Apr 21.
3 A noncoding expansion in EIF4A3 causes Richieri-Costa-Pereira syndrome, a craniofacial disorder associated with limb defects. Am J Hum Genet. 2014 Jan 2;94(1):120-8. doi: 10.1016/j.ajhg.2013.11.020. Epub 2013 Dec 19.
4 The biological function of long noncoding RNA FAL1 in oesophageal carcinoma cells.Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):896-903. doi: 10.1080/21691401.2019.1573738.
5 Cranial and cardiac neural crest defects in endothelin-A receptor-deficient mice.Development. 1998 Mar;125(5):813-24. doi: 10.1242/dev.125.5.813.
6 EIF4A3 deficient human iPSCs and mouse models demonstrate neural crest defects that underlie Richieri-Costa-Pereira syndrome.Hum Mol Genet. 2017 Jun 15;26(12):2177-2191. doi: 10.1093/hmg/ddx078.
7 Long non-coding RNA FAL1 regulated cell proliferation through Akt pathway via targeting PDK1 in esophageal cancer cells.Eur Rev Med Pharmacol Sci. 2018 Aug;22(16):5214-5222. doi: 10.26355/eurrev_201808_15719.
8 Long noncoding RNA VCAN-AS1 contributes to the progression of gastric cancer via regulating p53 expression.J Cell Physiol. 2020 May;235(5):4388-4398. doi: 10.1002/jcp.29315. Epub 2019 Oct 21.
9 Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders.Hum Mol Genet. 2013 May 1;22(9):1816-25. doi: 10.1093/hmg/ddt035. Epub 2013 Jan 31.
10 A review of craniofacial disorders caused by spliceosomal defects.Clin Genet. 2015 Nov;88(5):405-15. doi: 10.1111/cge.12596. Epub 2015 May 1.
11 Screening for the Biomarkers Associated with Myocardial Infarction by Bioinformatics Analysis.J Comput Biol. 2020 May;27(5):779-785. doi: 10.1089/cmb.2019.0180. Epub 2019 Sep 9.
12 Evaluation of prognostic usefulness of long noncoding RNA GAS5 and FAL1 in papillary thyroid carcinoma.J Cell Biochem. 2019 Jul;120(7):11471-11477. doi: 10.1002/jcb.28425. Epub 2019 Feb 11.
13 Long Noncoding RNA FAL1 Promotes Cell Proliferation, Invasion and Epithelial-Mesenchymal Transition Through the PTEN/AKT Signaling Axis in Non-Small Cell Lung Cancer.Cell Physiol Biochem. 2017;43(1):339-352. doi: 10.1159/000480414. Epub 2017 Aug 31.
14 Proteomics-based identification of DEAD-box protein 48 as a novel autoantigen, a prospective serum marker for pancreatic cancer.Biochem Biophys Res Commun. 2005 May 6;330(2):526-32. doi: 10.1016/j.bbrc.2005.02.181.
15 Differential tissue-specific protein markers of vaginal carcinoma.Br J Cancer. 2009 Apr 21;100(8):1303-14. doi: 10.1038/sj.bjc.6604975. Epub 2009 Mar 24.
16 Long non-coding RNA FAL1 functions as a ceRNA to antagonize the effect of miR-637 on the down-regulation of AKT1 in Hirschsprung's disease.Cell Prolif. 2018 Oct;51(5):e12489. doi: 10.1111/cpr.12489. Epub 2018 Jul 30.
17 LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells.Life Sci. 2018 Mar 15;197:122-129. doi: 10.1016/j.lfs.2018.02.006. Epub 2018 Feb 6.
18 LncRNA FAL1 promotes carcinogenesis by regulation of miR-637/NUPR1 pathway in colorectal cancer.Int J Biochem Cell Biol. 2019 Jan;106:46-56. doi: 10.1016/j.biocel.2018.09.015. Epub 2018 Sep 26.
19 LncRNA FAL1 is a negative prognostic biomarker and exhibits pro-oncogenic function in osteosarcoma.J Cell Biochem. 2018 Nov;119(10):8481-8489. doi: 10.1002/jcb.27074. Epub 2018 Jul 10.
20 EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis.Mol Cancer. 2018 Nov 23;17(1):166. doi: 10.1186/s12943-018-0911-0.
21 LncRNA FAL1 promotes the development of oral squamous cell carcinoma through regulating the microRNA-761/CRKL pathway.Eur Rev Med Pharmacol Sci. 2019 Jul;23(13):5779-5786. doi: 10.26355/eurrev_201907_18316.
22 Relationship of Focally Amplified Long Noncoding on Chromosome 1 (FAL1) lncRNA with E2F Transcription Factors in Thyroid Cancer.Medicine (Baltimore). 2016 Jan;95(4):e2592. doi: 10.1097/MD.0000000000002592.
23 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
24 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
25 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
26 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
27 Proteomic and functional analyses reveal a dual molecular mechanism underlying arsenic-induced apoptosis in human multiple myeloma cells. J Proteome Res. 2009 Jun;8(6):3006-19.
28 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
29 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
30 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
31 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
32 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
33 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
34 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
35 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.