General Information of Drug Combination (ID: DC2B6D3)

Drug Combination Name
Lidocaine Morphine
Indication
Disease Entry Status REF
Cancer Debulking Phase 2 [1]
Component Drugs Lidocaine   DML4ZOT Morphine   DMRMS0L
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Lidocaine
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [2]
Carpal tunnel syndrome N.A. Approved [3]
Interstitial cystitis GC00.3 Approved [3]
Long QT syndrome BC65.0 Approved [3]
Pain MG30-MG3Z Approved [3]
Pediculus capitis infestation 1G00.0 Approved [3]
Periodontitis DA0C Approved [3]
Postherpetic neuralgia 1E91.5 Approved [3]
Pthirus pubis infestation N.A. Approved [3]
Dysmenorrhea GA34.3 Phase 2 [4]
Chronic pain MG30 Investigative [3]
Neuralgia N.A. Investigative [3]
Premature ejaculation HA03.0Z Investigative [3]
Pruritus EC90 Investigative [3]
Lidocaine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated sodium channel alpha Nav1.9 (SCN11A) TTN9VTF SCNBA_HUMAN Blocker [8]
------------------------------------------------------------------------------------
Lidocaine Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Lidocaine Interacts with 10 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [10]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [11]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [12]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [13]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [14]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [14]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [12]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [12]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [12]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DME(s)
Lidocaine Interacts with 23 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Ethylation [16]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Methylation [17]
Alpha-1-acid glycoprotein 1 (ORM1) OTZKSBRE A1AG1_HUMAN Affects Binding [18]
C-reactive protein (CRP) OT0RFT8F CRP_HUMAN Increases ADR [19]
Glutathione hydrolase 1 proenzyme (GGT1) OTYDA1Z7 GGT1_HUMAN Increases ADR [19]
Alkaline phosphatase, placental type (ALPP) OTZU4G9W PPB1_HUMAN Increases ADR [19]
Estrogen receptor (ESR1) OTKLU61J ESR1_HUMAN Increases Expression [20]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [21]
Kininogen-1 (KNG1) OT4X9LDE KNG1_HUMAN Decreases Activity [22]
Beta-nerve growth factor (NGF) OTOLABJT NGF_HUMAN Decreases Expression [7]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Decreases Expression [23]
Neurofilament medium polypeptide (NEFM) OT8VCBNF NFM_HUMAN Decreases Expression [7]
Alpha-1-acid glycoprotein 2 (ORM2) OTRJGZP8 A1AG2_HUMAN Affects Binding [18]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [24]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Decreases Expression [24]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [25]
Neuronatin (NNAT) OTNRLO7G NNAT_HUMAN Decreases Expression [7]
Transient receptor potential cation channel subfamily V member 1 (TRPV1) OTHHDR03 TRPV1_HUMAN Increases Activity [26]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Sulfation [27]
Histamine H1 receptor (HRH1) OT8F9FV6 HRH1_HUMAN Affects Binding [28]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases ADR [19]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Affects Response To Substance [29]
Sulfotransferase 1B1 (SULT1B1) OTH0RQYA ST1B1_HUMAN Increases Sulfation [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 DOT(s)
Indication(s) of Morphine
Disease Entry ICD 11 Status REF
Advanced cancer 2A00-2F9Z Approved [5]
Chronic pain MG30 Approved [6]
Pain MG30-MG3Z Approved [5]
Diarrhea ME05.1 Investigative [5]
Morphine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Opioid receptor mu (MOP) TTKWM86 OPRM_HUMAN Modulator [33]
------------------------------------------------------------------------------------
Morphine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [34]
Multidrug resistance-associated protein 3 (ABCC3) DTQ3ZHF MRP3_HUMAN Substrate [35]
------------------------------------------------------------------------------------
Morphine Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [36]
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [37]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [38]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [39]
UDP-glucuronosyltransferase 2B7 (UGT2B7) DEB3CV1 UD2B7_HUMAN Metabolism [40]
UDP-glucuronosyltransferase 1A3 (UGT1A3) DEF2WXN UD13_HUMAN Metabolism [41]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Morphine Interacts with 47 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Affects Chemical Synthesis [42]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Response [43]
Mu-type opioid receptor (OPRM1) OT16AAT8 OPRM_HUMAN Increases Response [43]
Toll-like receptor 4 (TLR4) OTP7ML3S TLR4_HUMAN Affects Binding [44]
Bcl-2-like protein 11 (BCL2L11) OTNQQWFJ B2L11_HUMAN Increases Expression [45]
LIM homeobox transcription factor 1-beta (LMX1B) OTM8145D LMX1B_HUMAN Increases Expression [46]
Krueppel-like factor 7 (KLF7) OTS3YVA0 KLF7_HUMAN Increases Expression [47]
Protein c-Fos (FOS) OTJBUVWS FOS_HUMAN Increases Expression [48]
C-reactive protein (CRP) OT0RFT8F CRP_HUMAN Increases Expression [49]
Apolipoprotein B-100 (APOB) OTH0UOCZ APOB_HUMAN Increases Expression [49]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [50]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [46]
Interleukin-4 (IL4) OTOXBWAU IL4_HUMAN Increases Expression [51]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Secretion [50]
Coagulation factor VII (F7) OTGNJ97M FA7_HUMAN Increases Expression [49]
Fibroblast growth factor 2 (FGF2) OT7YUJ9F FGF2_HUMAN Decreases Secretion [50]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [52]
C-C motif chemokine 5 (CCL5) OTSCA5CK CCL5_HUMAN Decreases Expression [53]
NF-kappa-B inhibitor alpha (NFKBIA) OTFT924M IKBA_HUMAN Increases Expression [48]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [51]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [51]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Expression [54]
Kappa-type opioid receptor (OPRK1) OTXCZF4L OPRK_HUMAN Increases Activity [55]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [52]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [45]
Interleukin-2 (IL2) OTGI4NSA IL2_HUMAN Decreases Expression [51]
Eukaryotic translation initiation factor 5A-1 (EIF5A) OTQ8DJX5 IF5A1_HUMAN Increases Expression [46]
C-C motif chemokine 8 (CCL8) OTCTWYN8 CCL8_HUMAN Increases Secretion [50]
Cytochrome c (CYCS) OTBFALJD CYC_HUMAN Increases Secretion [45]
Transcription factor p65 (RELA) OTUJP9CN TF65_HUMAN Increases Phosphorylation [48]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [52]
Beclin-1 (BECN1) OT4X293M BECN1_HUMAN Increases Expression [56]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Decreases Expression [54]
Bcl-2 homologous antagonist/killer (BAK1) OTDP6ILW BAK_HUMAN Increases Expression [57]
DNA damage-binding protein 2 (DDB2) OTO8HVVB DDB2_HUMAN Increases Expression [46]
Ninjurin-1 (NINJ1) OTLRZ1EU NINJ1_HUMAN Increases Expression [46]
Bcl-2-binding component 3, isoforms 3/4 (BBC3) OTUAXDAY BBC3B_HUMAN Increases Expression [46]
Acetylcholinesterase (ACHE) OT2H8HG6 ACES_HUMAN Increases Chemical Synthesis [58]
Interleukin-1 receptor antagonist protein (IL1RN) OT308CBE IL1RA_HUMAN Affects Response To Substance [59]
Protein kinase C alpha type (PRKCA) OT5UWNRD KPCA_HUMAN Increases ADR [19]
Beta-arrestin-2 (ARRB2) OTAEJZCI ARRB2_HUMAN Affects Response To Substance [60]
Cocaine esterase (CES2) OTC647SQ EST2_HUMAN Increases Chemical Synthesis [61]
Signal transducer and activator of transcription 6 (STAT6) OTCKMP49 STAT6_HUMAN Affects Response To Substance [60]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases ADR [19]
Mitogen-activated protein kinase 8 (MAPK8) OTEREYS5 MK08_HUMAN Increases ADR [19]
Platelet-derived growth factor subunit B (PDGFB) OTMFMFC3 PDGFB_HUMAN Decreases Response To Substance [62]
Cholinesterase (BCHE) OTOH3WQ9 CHLE_HUMAN Increases Chemical Synthesis [58]
------------------------------------------------------------------------------------
⏷ Show the Full List of 47 DOT(s)

References

1 ClinicalTrials.gov (NCT05017246) Comparing Intrathecal Morphine and Intraoperative Lidocaine Infusion to Epidural Anesthesia With Postoperative PCA for Patients Undergoing Exploratory Laparotomy
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2623).
3 Lidocaine FDA Label
4 ClinicalTrials.gov (NCT00651313) Efficacy and Safety Study of Lidocaine Vaginal Gel for Recurrent Dysmenorrhea (Painful Periods). U.S. National Institutes of Health.
5 Morphine FDA Label
6 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services. 2015
7 Lidocaine prevents breast cancer growth by targeting neuronatin to inhibit nerve fibers formation. J Toxicol Sci. 2021;46(7):329-339. doi: 10.2131/jts.46.329.
8 Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008 May-Jun;58(3):280-6.
9 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
10 Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese Han volunteers living at low altitude and in native Han and Tibetan Chinese volunteers living at high altitude. Pharmacology. 2016;97(3-4):107-13.
11 Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218.
12 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
13 Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.
14 Drug Interactions Flockhart Table
15 Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016 Sep;6(5):413-425.
16 The effect of mild and moderate hepatic impairment on the pharmacokinetics of valdecoxib, a selective COX-2 inhibitor. Eur J Clin Pharmacol. 2005 Jun;61(4):247-56.
17 Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004 Dec;32(12):1434-45. doi: 10.1124/dmd.104.001313. Epub 2004 Sep 21.
18 Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996 Oct;6(5):403-15. doi: 10.1097/00008571-199610000-00004.
19 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
20 Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry. Odontology. 2013 Jan;101(1):43-51.
21 Screening of a chemical library reveals novel PXR-activating pharmacologic compounds. Toxicol Lett. 2015 Jan 5;232(1):193-202. doi: 10.1016/j.toxlet.2014.10.009. Epub 2014 Oct 16.
22 Effects of capsaicin, bradykinin and prostaglandin E2 in the human skin. Br J Dermatol. 1992 Feb;126(2):111-7. doi: 10.1111/j.1365-2133.1992.tb07806.x.
23 [Influence of lidocaine on systemic inflammation in perioperative patients undergoing cardiopulmonary bypass]. Beijing Da Xue Xue Bao Yi Xue Ban. 2005 Dec 18;37(6):622-4.
24 Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010 Mar;92(3):609-18. doi: 10.2106/JBJS.H.01847.
25 Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicol Sci. 2013 Dec;136(2):581-94. doi: 10.1093/toxsci/kft205. Epub 2013 Sep 19.
26 The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest. 2008 Feb;118(2):763-76. doi: 10.1172/JCI32751.
27 Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos. 1999 Sep;27(9):1057-63.
28 H(1)R mediates local anesthetic-induced vascular permeability in angioedema. Toxicol Appl Pharmacol. 2020 Apr 1;392:114921. doi: 10.1016/j.taap.2020.114921. Epub 2020 Feb 12.
29 Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel. Circ Res. 2008 Aug 15;103(4):396-404. doi: 10.1161/CIRCRESAHA.108.172619. Epub 2008 Jul 3.
30 Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics. 2000 Nov;10(8):679-85. doi: 10.1097/00008571-200011000-00002.
31 Isoform selectivity and kinetics of morphine 3- and 6-glucuronidation by human udp-glucuronosyltransferases: evidence for atypical glucuronidation kinetics by UGT2B7. Drug Metab Dispos. 2003 Sep;31(9):1086-9. doi: 10.1124/dmd.31.9.1086.
32 Inhibition of NF-B by opioids in T cells. J Immunol. 2013 Nov 1;191(9):4640-7. doi: 10.4049/jimmunol.1300320. Epub 2013 Sep 25.
33 Antianalgesia: stereoselective action of dextro-morphine over levo-morphine on glia in the mouse spinal cord.J Pharmacol Exp Ther.2005 Sep;314(3):1101-8.
34 Genetic variability and clinical efficacy of morphine. Acta Anaesthesiol Scand. 2005 Aug;49(7):902-8.
35 Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch. 2007 Feb;453(5):661-73.
36 Modulation of UDP-glucuronosyltransferase 2B7 function by cytochrome P450s in vitro: differential effects of CYP1A2, CYP2C9 and CYP3A4. Biol Pharm Bull. 2005 Oct;28(10):2026-7.
37 Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab Dispos. 2008 Apr;36(4):688-94.
38 Activation of G-proteins by morphine and codeine congeners: insights to the relevance of O- and N-demethylated metabolites at mu- and delta-opioid receptors. J Pharmacol Exp Ther. 2004 Feb;308(2):547-54.
39 In vitro metabolism study of buprenorphine: evidence for new metabolic pathways. Drug Metab Dispos. 2005 May;33(5):689-95.
40 Molecular cloning of the baboon UDP-glucuronosyltransferase 2B gene family and their activity in conjugating morphine. Drug Metab Dispos. 2010 Apr;38(4):545-53.
41 Glucuronidation of amines and other xenobiotics catalyzed by expressed human UDP-glucuronosyltransferase 1A3. Drug Metab Dispos. 1998 Jun;26(6):507-12.
42 Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med. 2004 Dec 30;351(27):2827-31. doi: 10.1056/NEJMoa041888.
43 Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008 Apr;83(4):559-66.
44 Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience. 2010 May 19;167(3):880-93. doi: 10.1016/j.neuroscience.2010.02.011. Epub 2010 Feb 21.
45 Chronic high-dose morphine treatment promotes SH-SY5Y cell apoptosis via c-Jun N-terminal kinase-mediated activation of mitochondria-dependent pathway. FEBS J. 2009 Apr;276(7):2022-36. doi: 10.1111/j.1742-4658.2009.06938.x.
46 Morphine induces DNA damage and P53 activation in CD3+ T cells. Biochim Biophys Acta. 2009 Aug;1790(8):793-9. doi: 10.1016/j.bbagen.2009.04.011. Epub 2009 May 3.
47 Identification of opioid-regulated genes in human lymphocytic cells by differential display: upregulation of Krppel-like factor 7 by morphine. Exp Cell Res. 2003 Dec 10;291(2):340-51. doi: 10.1016/s0014-4827(03)00408-7.
48 Mechanisms of the inhibition of nuclear factor-B by morphine in neuronal cells. Mol Pharmacol. 2012 Apr;81(4):587-97. doi: 10.1124/mol.111.076620. Epub 2012 Jan 18.
49 Effect of opium addiction on new and traditional cardiovascular risk factors: do duration of addiction and route of administration matter?. Lipids Health Dis. 2008 Nov 3;7:42. doi: 10.1186/1476-511X-7-42.
50 Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: impact on inflammation and oxidative stress in the central nervous system. J Cell Biochem. 2010 Jul 1;110(4):834-45. doi: 10.1002/jcb.22592.
51 opioid receptor agonist-selective regulation of interleukin-4 in T lymphocytes. J Neuroimmunol. 2013 Oct 15;263(1-2):35-42. doi: 10.1016/j.jneuroim.2013.07.012. Epub 2013 Jul 25.
52 Morphine promotes apoptosis in Jurkat cells. J Leukoc Biol. 1999 Oct;66(4):650-8. doi: 10.1002/jlb.66.4.650.
53 Morphine inhibits human microglial cell production of, and migration towards, RANTES. J Psychopharmacol. 2000;14(3):238-43. doi: 10.1177/026988110001400307.
54 beta-arrestin2 inhibits opioid-induced breast cancer cell death through Akt and caspase-8 pathways. Neoplasma. 2009;56(2):108-13. doi: 10.4149/neo_2009_02_108.
55 In vivo and in vitro evaluation of novel -opioid receptor agonist compounds. Eur J Pharmacol. 2015 Nov 15;767:193-200. doi: 10.1016/j.ejphar.2015.10.025. Epub 2015 Oct 20.
56 Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy. 2010 Apr;6(3):386-94. doi: 10.4161/auto.6.3.11289. Epub 2010 Apr 25.
57 Morphine induces apoptosis of human endothelial cells through nitric oxide and reactive oxygen species pathways. Toxicology. 2009 Feb 4;256(1-2):83-91. doi: 10.1016/j.tox.2008.11.015. Epub 2008 Nov 25.
58 Kinetic characterization of cholinesterases and a therapeutically valuable cocaine hydrolase for their catalytic activities against heroin and its metabolite 6-monoacetylmorphine. Chem Biol Interact. 2018 Sep 25;293:107-114.
59 A role for proinflammatory cytokines and fractalkine in analgesia, tolerance, and subsequent pain facilitation induced by chronic intrathecal morphine. J Neurosci. 2004 Aug 18;24(33):7353-65. doi: 10.1523/JNEUROSCI.1850-04.2004.
60 Clinical response to morphine in cancer patients and genetic variation in candidate genes. Pharmacogenomics J. 2005;5(5):324-36. doi: 10.1038/sj.tpj.6500327.
61 Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases. J Pharmacol Exp Ther. 1996 Nov;279(2):713-7.
62 A growth factor attenuates HIV-1 Tat and morphine induced damage to human neurons: implication in HIV/AIDS-drug abuse cases. PLoS One. 2011 Mar 24;6(3):e18116. doi: 10.1371/journal.pone.0018116.