General Information of Drug Off-Target (DOT) (ID: OTSXFBXB)

DOT Name Cytochrome P450 3A5 (CYP3A5)
Synonyms EC 1.14.14.1; CYPIIIA5; Cytochrome P450-PCN3
Gene Name CYP3A5
UniProt ID
CP3A5_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
5VEU
EC Number
1.14.14.1
Pfam ID
PF00067
Sequence
MDLIPNLAVETWLLLAVSLVLLYLYGTRTHGLFKRLGIPGPTPLPLLGNVLSYRQGLWKF
DTECYKKYGKMWGTYEGQLPVLAITDPDVIRTVLVKECYSVFTNRRSLGPVGFMKSAISL
AEDEEWKRIRSLLSPTFTSGKLKEMFPIIAQYGDVLVRNLRREAEKGKPVTLKDIFGAYS
MDVITGTSFGVNIDSLNNPQDPFVESTKKFLKFGFLDPLFLSIILFPFLTPVFEALNVSL
FPKDTINFLSKSVNRMKKSRLNDKQKHRLDFLQLMIDSQNSKETESHKALSDLELAAQSI
IFIFAGYETTSSVLSFTLYELATHPDVQQKLQKEIDAVLPNKAPPTYDAVVQMEYLDMVV
NETLRLFPVAIRLERTCKKDVEINGVFIPKGSMVVIPTYALHHDPKYWTEPEEFRPERFS
KKKDSIDPYIYTPFGTGPRNCIGMRFALMNMKLALIRVLQNFSFKPCKETQIPLKLDTQG
LLQPEKPIVLKVDSRDGTLSGE
Function
A cytochrome P450 monooxygenase involved in the metabolism of steroid hormones and vitamins. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of catechol estrogens from 17beta-estradiol (E2) and estrone (E1), namely 2-hydroxy E1 and E2. Catalyzes 6beta-hydroxylation of the steroid hormones testosterone, progesterone, and androstenedione. Catalyzes the oxidative conversion of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA). Further metabolizes all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may play a role in hepatic atRA clearance. Also involved in the oxidative metabolism of xenobiotics, including calcium channel blocking drug nifedipine and immunosuppressive drug cyclosporine.
KEGG Pathway
Steroid hormone biosynthesis (hsa00140 )
Retinol metabolism (hsa00830 )
Metabolism of xenobiotics by cytochrome P450 (hsa00980 )
Drug metabolism - cytochrome P450 (hsa00982 )
Metabolic pathways (hsa01100 )
Chemical carcinogenesis - D. adducts (hsa05204 )
Reactome Pathway
Aflatoxin activation and detoxification (R-HSA-5423646 )
Xenobiotics (R-HSA-211981 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 18 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Troglitazone DM3VFPD Approved Cytochrome P450 3A5 (CYP3A5) increases the metabolism of Troglitazone. [41]
Clozapine DMFC71L Approved Cytochrome P450 3A5 (CYP3A5) increases the metabolism of Clozapine. [43]
Amodiaquine DME4RA8 Approved Cytochrome P450 3A5 (CYP3A5) increases the metabolism of Amodiaquine. [53]
Thiotepa DMIZKOP Approved Cytochrome P450 3A5 (CYP3A5) affects the export of Thiotepa. [58]
Eplerenone DMF0NQR Approved Cytochrome P450 3A5 (CYP3A5) increases the abundance of Eplerenone. [62]
Erdafitinib DMI782S Approved Cytochrome P450 3A5 (CYP3A5) increases the metabolism of Erdafitinib. [63]
CQA 206-291 DM60TVK Phase 3 Cytochrome P450 3A5 (CYP3A5) increases the metabolism of CQA 206-291. [66]
Tanespimycin DMNLQHK Phase 2 Cytochrome P450 3A5 (CYP3A5) affects the metabolism of Tanespimycin. [67]
(Z)-endoxifen DMGDOS2 Phase 2 Cytochrome P450 3A5 (CYP3A5) increases the metabolism of (Z)-endoxifen. [68]
Icaritin DMGHQ37 Phase 2 Cytochrome P450 3A5 (CYP3A5) increases the metabolism of Icaritin. [69]
Carfentanil DM7ADGX Phase 2 Cytochrome P450 3A5 (CYP3A5) increases the metabolism of Carfentanil. [70]
Bisphenol A DM2ZLD7 Investigative Cytochrome P450 3A5 (CYP3A5) increases the metabolism of Bisphenol A. [74]
geraniol DMS3CBD Investigative Cytochrome P450 3A5 (CYP3A5) increases the metabolism of geraniol. [75]
Phencyclidine DMQBEYX Investigative Cytochrome P450 3A5 (CYP3A5) affects the metabolism of Phencyclidine. [76]
1,4-Naphthoquinone DMTCMH7 Investigative Cytochrome P450 3A5 (CYP3A5) increases the abundance of 1,4-Naphthoquinone. [77]
Fenthion DMKEG49 Investigative Cytochrome P450 3A5 (CYP3A5) affects the metabolism of Fenthion. [78]
aconitine DMFOZ60 Investigative Cytochrome P450 3A5 (CYP3A5) increases the metabolism of aconitine. [79]
TEPA (possesses cytotoxic activity) DMROS5K Investigative Cytochrome P450 3A5 (CYP3A5) affects the export of TEPA (possesses cytotoxic activity). [58]
------------------------------------------------------------------------------------
⏷ Show the Full List of 18 Drug(s)
This DOT Affected the Biotransformations of 23 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Etoposide DMNH3PG Approved Cytochrome P450 3A5 (CYP3A5) decreases the methylation of Etoposide. [42]
Ethinyl estradiol DMODJ40 Approved Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of Ethinyl estradiol. [44]
Ifosfamide DMCT3I8 Approved Cytochrome P450 3A5 (CYP3A5) decreases the ethylation of Ifosfamide. [47]
Imatinib DM7RJXL Approved Cytochrome P450 3A5 (CYP3A5) decreases the methylation of Imatinib. [48]
Cholecalciferol DMGU74E Approved Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of Cholecalciferol. [49]
Tacrolimus DMZ7XNQ Approved Cytochrome P450 3A5 (CYP3A5) decreases the methylation of Tacrolimus. [51]
Prasterone DM67VKL Approved Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of Prasterone. [52]
Erythromycin DM4K7GQ Approved Cytochrome P450 3A5 (CYP3A5) decreases the methylation of Erythromycin. [54]
Lidocaine DML4ZOT Approved Cytochrome P450 3A5 (CYP3A5) decreases the methylation of Lidocaine. [54]
Teniposide DMLW57T Approved Cytochrome P450 3A5 (CYP3A5) decreases the methylation of Teniposide. [42]
Dextromethorphan DMUDJZM Approved Cytochrome P450 3A5 (CYP3A5) decreases the methylation of Dextromethorphan. [54]
Flunitrazepam DMGR5Z3 Approved Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of Flunitrazepam. [54]
Midazolam DMXOELT Approved Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of Midazolam. [54]
Alprazolam DMC7XDN Approved Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of Alprazolam. [60]
Buspirone DMBS632 Approved Cytochrome P450 3A5 (CYP3A5) increases the oxidation of Buspirone. [61]
Rivaroxaban DMQMBZ1 Approved Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of Rivaroxaban. [63]
N-DESMETHYLCLOZAPINE DMVIRN3 Phase 2 Cytochrome P450 3A5 (CYP3A5) increases the chemical synthesis of N-DESMETHYLCLOZAPINE. [43]
Tetrandrine DMAOJBX Phase 1 Cytochrome P450 3A5 (CYP3A5) increases the glutathionylation of Tetrandrine. [71]
EMODIN DMAEDQG Terminated Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of EMODIN. [72]
HELENALIN DMMCI4H Terminated Cytochrome P450 3A5 (CYP3A5) increases the oxidation of HELENALIN. [73]
DM9CEI5 Cytochrome P450 3A5 (CYP3A5) increases the oxidation of . [64]
eucalyptol DME5CK3 Investigative Cytochrome P450 3A5 (CYP3A5) increases the hydroxylation of eucalyptol. [80]
Alpha-Hydroxy-Midazolam DMAQBKX Investigative Cytochrome P450 3A5 (CYP3A5) increases the chemical synthesis of Alpha-Hydroxy-Midazolam. [81]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Drug(s)
This DOT Affected the Drug Response of 11 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Simvastatin DM30SGU Approved Cytochrome P450 3A5 (CYP3A5) affects the response to substance of Simvastatin. [45]
Cyclophosphamide DM4O2Z7 Approved Cytochrome P450 3A5 (CYP3A5) affects the response to substance of Cyclophosphamide. [46]
Warfarin DMJYCVW Approved Cytochrome P450 3A5 (CYP3A5) affects the response to substance of Warfarin. [50]
Clopidogrel DMOL54H Approved Cytochrome P450 3A5 (CYP3A5) affects the response to substance of Clopidogrel. [55]
Dronedarone DMA8FS5 Approved Cytochrome P450 3A5 (CYP3A5) decreases the response to substance of Dronedarone. [56]
Amlodipine DMBDAZV Approved Cytochrome P450 3A5 (CYP3A5) affects the response to substance of Amlodipine. [57]
Valsartan DMREUQ6 Approved Cytochrome P450 3A5 (CYP3A5) affects the response to substance of Valsartan. [57]
Brilinta DMBR01X Approved Cytochrome P450 3A5 (CYP3A5) increases the Acute coronary syndrome ADR of Brilinta. [59]
TOCOTRIENOL DM1UE67 Approved Cytochrome P450 3A5 (CYP3A5) affects the response to substance of TOCOTRIENOL. [64]
Chlorpromazine DMBGZI3 Phase 3 Trial Cytochrome P450 3A5 (CYP3A5) decreases the response to substance of Chlorpromazine. [65]
Amiodarone DMUTEX3 Phase 2/3 Trial Cytochrome P450 3A5 (CYP3A5) decreases the response to substance of Amiodarone. [65]
------------------------------------------------------------------------------------
⏷ Show the Full List of 11 Drug(s)
49 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Cytochrome P450 3A5 (CYP3A5). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Cytochrome P450 3A5 (CYP3A5). [2]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Cytochrome P450 3A5 (CYP3A5). [3]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Cytochrome P450 3A5 (CYP3A5). [4]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Cytochrome P450 3A5 (CYP3A5). [5]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Cytochrome P450 3A5 (CYP3A5). [6]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Cytochrome P450 3A5 (CYP3A5). [7]
Triclosan DMZUR4N Approved Triclosan increases the expression of Cytochrome P450 3A5 (CYP3A5). [8]
Carbamazepine DMZOLBI Approved Carbamazepine increases the expression of Cytochrome P450 3A5 (CYP3A5). [9]
Zoledronate DMIXC7G Approved Zoledronate increases the expression of Cytochrome P450 3A5 (CYP3A5). [10]
Selenium DM25CGV Approved Selenium decreases the expression of Cytochrome P450 3A5 (CYP3A5). [11]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Cytochrome P450 3A5 (CYP3A5). [12]
Progesterone DMUY35B Approved Progesterone increases the expression of Cytochrome P450 3A5 (CYP3A5). [13]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Cytochrome P450 3A5 (CYP3A5). [12]
Cannabidiol DM0659E Approved Cannabidiol decreases the activity of Cytochrome P450 3A5 (CYP3A5). [14]
Malathion DMXZ84M Approved Malathion increases the expression of Cytochrome P450 3A5 (CYP3A5). [15]
Permethrin DMZ0Q1G Approved Permethrin increases the expression of Cytochrome P450 3A5 (CYP3A5). [16]
Obeticholic acid DM3Q1SM Approved Obeticholic acid decreases the expression of Cytochrome P450 3A5 (CYP3A5). [17]
Rifampicin DM5DSFZ Approved Rifampicin increases the expression of Cytochrome P450 3A5 (CYP3A5). [18]
Thalidomide DM70BU5 Approved Thalidomide increases the expression of Cytochrome P450 3A5 (CYP3A5). [19]
Phenytoin DMNOKBV Approved Phenytoin increases the expression of Cytochrome P450 3A5 (CYP3A5). [9]
Hydrocortisone DMGEMB7 Approved Hydrocortisone increases the expression of Cytochrome P450 3A5 (CYP3A5). [20]
Ritonavir DMU764S Approved Ritonavir decreases the activity of Cytochrome P450 3A5 (CYP3A5). [21]
Omeprazole DM471KJ Approved Omeprazole increases the expression of Cytochrome P450 3A5 (CYP3A5). [22]
Clotrimazole DMMFCIH Approved Clotrimazole increases the expression of Cytochrome P450 3A5 (CYP3A5). [23]
Nelfinavir mesylate DMFX6G8 Approved Nelfinavir mesylate decreases the activity of Cytochrome P450 3A5 (CYP3A5). [21]
Budesonide DMJIBAW Approved Budesonide increases the expression of Cytochrome P450 3A5 (CYP3A5). [24]
Reserpine DM6VM38 Approved Reserpine increases the expression of Cytochrome P450 3A5 (CYP3A5). [23]
Fluticasone propionate DMRWLB2 Approved Fluticasone propionate increases the expression of Cytochrome P450 3A5 (CYP3A5). [25]
Dabrafenib DMX6OE3 Approved Dabrafenib decreases the activity of Cytochrome P450 3A5 (CYP3A5). [27]
Flunisolide DMZSWQC Approved Flunisolide increases the expression of Cytochrome P450 3A5 (CYP3A5). [25]
Troleandomycin DMUZNIG Approved Troleandomycin decreases the activity of Cytochrome P450 3A5 (CYP3A5). [28]
Beclomethasone dipropionate DM5NW1E Phase 4 Beclomethasone dipropionate increases the expression of Cytochrome P450 3A5 (CYP3A5). [24]
Verapamil DMA7PEW Phase 2/3 Trial Verapamil decreases the activity of Cytochrome P450 3A5 (CYP3A5). [29]
Tocopherol DMBIJZ6 Phase 2 Tocopherol decreases the expression of Cytochrome P450 3A5 (CYP3A5). [11]
Afimoxifene DMFORDT Phase 2 Afimoxifene decreases the activity of Cytochrome P450 3A5 (CYP3A5). [30]
PEITC DMOMN31 Phase 2 PEITC decreases the expression of Cytochrome P450 3A5 (CYP3A5). [31]
PD-0325901 DM27D4J Phase 2 PD-0325901 increases the expression of Cytochrome P450 3A5 (CYP3A5). [32]
Impoyz DMB1N6P Phase 2 Impoyz increases the expression of Cytochrome P450 3A5 (CYP3A5). [33]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Cytochrome P450 3A5 (CYP3A5). [34]
Droloxifene DM9JPUD Discontinued in Phase 2 Droloxifene decreases the activity of Cytochrome P450 3A5 (CYP3A5). [30]
Deguelin DMXT7WG Investigative Deguelin affects the expression of Cytochrome P450 3A5 (CYP3A5). [35]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Cytochrome P450 3A5 (CYP3A5). [36]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of Cytochrome P450 3A5 (CYP3A5). [37]
Chlorpyrifos DMKPUI6 Investigative Chlorpyrifos increases the expression of Cytochrome P450 3A5 (CYP3A5). [38]
U0126 DM31OGF Investigative U0126 increases the expression of Cytochrome P450 3A5 (CYP3A5). [32]
Hyperforin DM2L3PE Investigative Hyperforin increases the expression of Cytochrome P450 3A5 (CYP3A5). [39]
CI-1040 DMF3DZX Investigative CI-1040 increases the expression of Cytochrome P450 3A5 (CYP3A5). [32]
TAMARIXETIN DM0EP51 Investigative TAMARIXETIN increases the expression of Cytochrome P450 3A5 (CYP3A5). [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 49 Drug(s)
1 Drug(s) Affected the Biochemical Pathways of This DOT
Drug Name Drug ID Highest Status Interaction REF
Nortriptyline DM4KDYJ Approved Nortriptyline increases the metabolism of Cytochrome P450 3A5 (CYP3A5). [26]
------------------------------------------------------------------------------------

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
5 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
6 Large-scale in silico and microarray-based identification of direct 1,25-dihydroxyvitamin D3 target genes. Mol Endocrinol. 2005 Nov;19(11):2685-95.
7 The exosome-like vesicles derived from androgen exposed-prostate stromal cells promote epithelial cells proliferation and epithelial-mesenchymal transition. Toxicol Appl Pharmacol. 2021 Jan 15;411:115384. doi: 10.1016/j.taap.2020.115384. Epub 2020 Dec 25.
8 Triclosan treatment decreased the antitumor effect of sorafenib on hepatocellular carcinoma cells. Onco Targets Ther. 2018 May 18;11:2945-2954.
9 Induction of CYP3As in HepG2 cells by several drugs. Association between induction of CYP3A4 and expression of glucocorticoid receptor. Biol Pharm Bull. 2003 Apr;26(4):510-7.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Induction and regulation of xenobiotic-metabolizing cytochrome P450s in the human A549 lung adenocarcinoma cell line. Am J Respir Cell Mol Biol. 2000 Mar;22(3):360-6.
13 Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug Metab Dispos. 2013 Feb;41(2):263-9.
14 Characterization of the structural determinants required for potent mechanism-based inhibition of human cytochrome P450 1A1 by cannabidiol. Chem Biol Interact. 2014 May 25;215:62-8.
15 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
16 Pyrethroids: cytotoxicity and induction of CYP isoforms in human hepatocytes. Drug Metabol Drug Interact. 2008;23(3-4):211-36.
17 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
18 Evaluation of gene induction of drug-metabolizing enzymes and transporters in primary culture of human hepatocytes using high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi. 2002 May;122(5):339-61.
19 Induction of human cytochrome P450 3A enzymes in cultured placental cells by thalidomide and relevance to bioactivation and toxicity. J Toxicol Sci. 2017;42(3):343-348.
20 Induction of hepatic CYP3A enzymes by pregnancy-related hormones: studies in human hepatocytes and hepatic cell lines. Drug Metab Dispos. 2013 Feb;41(2):281-90.
21 Mechanism-based inactivation of CYP3A by HIV protease inhibitors. J Pharmacol Exp Ther. 2005 Feb;312(2):583-91.
22 Use of mRNA expression to detect the induction of drug metabolising enzymes in rat and human hepatocytes. Toxicol Appl Pharmacol. 2009 Feb 15;235(1):86-96.
23 Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996 Feb;49(2):311-8.
24 Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J Pharmacol Exp Ther. 2003 Feb;304(2):745-52.
25 Regulation of CYP3A genes by glucocorticoids in human lung cells. F1000Res. 2013 Aug 13;2:173.
26 Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Chem Biol Interact. 2008 May 9;173(1):59-67.
27 Dabrafenib inhibits ABCG2 and cytochrome P450 isoenzymes; potential implications for combination anticancer therapy. Toxicol Appl Pharmacol. 2022 Jan 1;434:115797. doi: 10.1016/j.taap.2021.115797. Epub 2021 Nov 13.
28 Metabolism of alfentanil by cytochrome p4503a (cyp3a) enzymes. Drug Metab Dispos. 2005 Mar;33(3):303-11.
29 Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos. 2005 May;33(5):664-71.
30 Reversible and irreversible inhibition of CYP3A enzymes by tamoxifen and metabolites. Xenobiotica. 2002 Oct;32(10):863-78.
31 Sulforaphane- and phenethyl isothiocyanate-induced inhibition of aflatoxin B1-mediated genotoxicity in human hepatocytes: role of GSTM1 genotype and CYP3A4 gene expression. Toxicol Sci. 2010 Aug;116(2):422-32.
32 U0126, a mitogen-activated protein kinase kinase 1 and 2 (MEK1 and 2) inhibitor, selectively up-regulates main isoforms of CYP3A subfamily via a pregnane X receptor (PXR) in HepG2 cells. Arch Toxicol. 2014 Dec;88(12):2243-59.
33 Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br J Dermatol. 2006 Aug;155(2):275-81.
34 Identification of a transcriptomic signature of food-relevant genotoxins in human HepaRG hepatocarcinoma cells. Food Chem Toxicol. 2020 Jun;140:111297. doi: 10.1016/j.fct.2020.111297. Epub 2020 Mar 28.
35 Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation. Arch Toxicol. 2022 Jan;96(1):259-285. doi: 10.1007/s00204-021-03160-7. Epub 2021 Oct 13.
36 Modulation of the xenobiotic transformation system and inflammatory response by ochratoxin A exposure using a co-culture system of Caco-2 and HepG2 cells. Food Chem Toxicol. 2015 Dec;86:245-52.
37 Butyrate interacts with benzo[a]pyrene to alter expression and activities of xenobiotic metabolizing enzymes involved in metabolism of carcinogens within colon epithelial cell models. Toxicology. 2019 Jan 15;412:1-11.
38 Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes P450 in human liver. Toxicology. 2006 Jul 5;224(1-2):22-32.
39 No activation of human pregnane X receptor by hyperforin-related phloroglucinols. J Pharmacol Exp Ther. 2014 Mar;348(3):393-400.
40 3-Hydroxyflavone and structural analogues differentially activate pregnane X receptor: Implication for inflammatory bowel disease. Pharmacol Res. 2015 Oct;100:64-72.
41 Troglitazone thiol adduct formation in human liver microsomes: enzyme kinetics and reaction phenotyping. Drug Metab Lett. 2008 Aug;2(3):184-9. doi: 10.2174/187231208785425773.
42 O-demethylation of epipodophyllotoxins is catalyzed by human cytochrome P450 3A4. Mol Pharmacol. 1994 Feb;45(2):352-8.
43 Interindividual variation in relative CYP1A2/3A4 phenotype influences susceptibility of clozapine oxidation to cytochrome P450-specific inhibition in human hepatic microsomes. Drug Metab Dispos. 2008 Dec;36(12):2547-55. doi: 10.1124/dmd.108.023671. Epub 2008 Sep 22.
44 The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinylestradiol. Drug Metab Dispos. 2004 Nov;32(11):1209-12.
45 Effect of polymorphic CYP3A5 genotype on the single-dose simvastatin pharmacokinetics in healthy subjects. J Clin Pharmacol. 2007 Jan;47(1):87-93. doi: 10.1177/0091270006295063.
46 Associations between drug metabolism genotype, chemotherapy pharmacokinetics, and overall survival in patients with breast cancer. J Clin Oncol. 2005 Sep 1;23(25):6117-25. doi: 10.1200/JCO.2005.06.075. Epub 2005 Aug 8.
47 Contribution of CYP3A5 to hepatic and renal ifosfamide N-dechloroethylation. Drug Metab Dispos. 2005 Jul;33(7):1074-81. doi: 10.1124/dmd.104.002279. Epub 2005 Apr 8.
48 Participation of CYP2C8 and CYP3A4 in the N-demethylation of imatinib in human hepatic microsomes. Br J Pharmacol. 2010 Nov;161(5):1059-69. doi: 10.1111/j.1476-5381.2010.00946.x.
49 Intestinal and hepatic CYP3A4 catalyze hydroxylation of 1alpha,25-dihydroxyvitamin D(3): implications for drug-induced osteomalacia. Mol Pharmacol. 2006 Jan;69(1):56-65.
50 Genetic and environmental factors determining clinical outcomes and cost of warfarin therapy: a prospective study. Pharmacogenet Genomics. 2009 Oct;19(10):800-12. doi: 10.1097/FPC.0b013e3283317ab5.
51 Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem. 2005 Aug;51(8):1374-81.
52 Variability of CYP3A7 expression in human fetal liver. J Pharmacol Exp Ther. 2005 Aug;314(2):626-35. doi: 10.1124/jpet.105.086504. Epub 2005 Apr 21.
53 Apoptosis contributes to the cytotoxicity induced by amodiaquine and its major metabolite N-desethylamodiaquine in hepatic cells. Toxicol In Vitro. 2020 Feb;62:104669. doi: 10.1016/j.tiv.2019.104669. Epub 2019 Oct 16.
54 Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004 Dec;32(12):1434-45. doi: 10.1124/dmd.104.001313. Epub 2004 Sep 21.
55 Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ. 2006 Jun 6;174(12):1715-22. doi: 10.1503/cmaj.060664.
56 The role of hepatic cytochrome P450s in the cytotoxicity of dronedarone. Arch Toxicol. 2018 Jun;92(6):1969-1981. doi: 10.1007/s00204-018-2196-x. Epub 2018 Apr 3.
57 Comparing antihypertensive effect and plasma ciclosporin concentration between amlodipine and valsartan regimens in hypertensive renal transplant patients receiving ciclosporin therapy. Am J Cardiovasc Drugs. 2011 Dec 1;11(6):401-9. doi: 10.2165/11593800-000000000-00000.
58 Polymorphisms of drug-metabolizing enzymes (GST, CYP2B6 and CYP3A) affect the pharmacokinetics of thiotepa and tepa. Br J Clin Pharmacol. 2009 Jan;67(1):50-60. doi: 10.1111/j.1365-2125.2008.03321.x. Epub 2008 Nov 17.
59 Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur Heart J. 2015 Aug 1;36(29):1901-12.
60 Identification and phenotype characterization of two CYP3A haplotypes causing different enzymatic capacity in fetal livers. Clin Pharmacol Ther. 2005 Apr;77(4):259-70.
61 Cytochrome P450 3A-mediated metabolism of buspirone in human liver microsomes. Drug Metab Dispos. 2005 Apr;33(4):500-7.
62 The relative role of CYP3A4 and CYP3A5 in eplerenone metabolism. Toxicol Lett. 2019 Oct 15;315:9-13.
63 Mechanism-Based Inactivation of Cytochrome P450 3A4 and 3A5 by the Fibroblast Growth Factor Receptor Inhibitor Erdafitinib. Chem Res Toxicol. 2021 Jul 19;34(7):1800-1813. doi: 10.1021/acs.chemrestox.1c00178. Epub 2021 Jun 30.
64 Vitamin E analogues differentially inhibit human cytochrome P450 3A (CYP3A)-mediated oxidative metabolism of lithocholic acid: Impact of -tocotrienol on lithocholic acid cytotoxicity. Toxicology. 2019 Jul 1;423:62-74. doi: 10.1016/j.tox.2019.05.005. Epub 2019 May 15.
65 Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity. Chem Biol Interact. 2016 Aug 5;255:63-73. doi: 10.1016/j.cbi.2015.10.009. Epub 2015 Oct 22.
66 Characterization of the cytochrome P-450 gene family responsible for the N-dealkylation of the ergot alkaloid CQA 206-291 in humans. Drug Metab Dispos. 1992 Jan-Feb;20(1):56-63.
67 Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol. 2005 Feb 20;23(6):1078-87. doi: 10.1200/JCO.2005.09.119.
68 The formation of estrogen-like tamoxifen metabolites and their influence on enzyme activity and gene expression of ADME genes. Arch Toxicol. 2018 Mar;92(3):1099-1112.
69 Identification of Quinone Methide Intermediate Resulting from Metabolic Activation of Icaritin in Vitro and in Vivo. Chem Res Toxicol. 2019 Jun 17;32(6):969-973. doi: 10.1021/acs.chemrestox.8b00418. Epub 2019 Apr 9.
70 Identification of human cytochrome P450 isozymes involved in the oxidative metabolism of carfentanil. Toxicol Lett. 2021 Jun 1;343:28-33. doi: 10.1016/j.toxlet.2021.02.017. Epub 2021 Feb 27.
71 Pulmonary toxicity and metabolic activation of tetrandrine in CD-1 mice. Chem Res Toxicol. 2011 Dec 19;24(12):2142-52. doi: 10.1021/tx200290s. Epub 2011 Nov 11.
72 Chemical Reactivity of Aloe-Emodin and Its Hydroxylation Metabolites to Thiols. Chem Res Toxicol. 2019 Feb 18;32(2):234-244. doi: 10.1021/acs.chemrestox.8b00248. Epub 2019 Feb 6.
73 In vitro metabolism of helenalin and its inhibitory effect on human cytochrome P450 activity. Arch Toxicol. 2022 Mar;96(3):793-808. doi: 10.1007/s00204-021-03218-6. Epub 2022 Jan 6.
74 Ipso substitution of bisphenol A catalyzed by microsomal cytochrome P450 and enhancement of estrogenic activity. Toxicol Lett. 2011 May 30;203(1):92-5. doi: 10.1016/j.toxlet.2011.03.010. Epub 2011 Mar 23.
75 Cytochrome P450-mediated activation of the fragrance compound geraniol forms potent contact allergens. Toxicol Appl Pharmacol. 2008 Dec 1;233(2):308-13. doi: 10.1016/j.taap.2008.08.014. Epub 2008 Sep 10.
76 Mechanism of inactivation of human cytochrome P450 2B6 by phencyclidine. Drug Metab Dispos. 2006 Sep;34(9):1523-9. doi: 10.1124/dmd.106.010579. Epub 2006 Jun 16.
77 In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes. Drug Metab Dispos. 2006 Jan;34(1):176-83. doi: 10.1124/dmd.105.005785. Epub 2005 Oct 21.
78 Foetal and adult human CYP3A isoforms in the bioactivation of organophosphorothionate insecticides. Toxicol Lett. 2006 Dec 15;167(3):245-55. doi: 10.1016/j.toxlet.2006.10.006. Epub 2006 Oct 24.
79 Involvement of CYP3A4/5 and CYP2D6 in the metabolism of aconitine using human liver microsomes and recombinant CYP450 enzymes. Toxicol Lett. 2011 Apr 10;202(1):47-54. doi: 10.1016/j.toxlet.2011.01.019. Epub 2011 Jan 28.
80 Metabolism of 1,8-cineole by human cytochrome P450 enzymes: identification of a new hydroxylated metabolite. Biochim Biophys Acta. 2005 Apr 15;1722(3):304-11. doi: 10.1016/j.bbagen.2004.12.019. Epub 2005 Jan 17.
81 Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochem Pharmacol. 2008 Mar 15;75(6):1426-37. doi: 10.1016/j.bcp.2007.11.012. Epub 2007 Dec 4.