General Information of Drug Combination (ID: DC3N734)

Drug Combination Name
Lidocaine Sevoflurane
Indication
Disease Entry Status REF
Colonic Cancer Phase 3 [1]
Component Drugs Lidocaine   DML4ZOT Sevoflurane   DMC9O43
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Lidocaine
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [2]
Carpal tunnel syndrome N.A. Approved [3]
Interstitial cystitis GC00.3 Approved [3]
Long QT syndrome BC65.0 Approved [3]
Pain MG30-MG3Z Approved [3]
Pediculus capitis infestation 1G00.0 Approved [3]
Periodontitis DA0C Approved [3]
Postherpetic neuralgia 1E91.5 Approved [3]
Pthirus pubis infestation N.A. Approved [3]
Dysmenorrhea GA34.3 Phase 2 [4]
Chronic pain MG30 Investigative [3]
Neuralgia N.A. Investigative [3]
Premature ejaculation HA03.0Z Investigative [3]
Pruritus EC90 Investigative [3]
Lidocaine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated sodium channel alpha Nav1.9 (SCN11A) TTN9VTF SCNBA_HUMAN Blocker [8]
------------------------------------------------------------------------------------
Lidocaine Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Lidocaine Interacts with 10 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [10]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [11]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [12]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [13]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [14]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [14]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [12]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [12]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [12]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DME(s)
Lidocaine Interacts with 23 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Ethylation [16]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Methylation [17]
Alpha-1-acid glycoprotein 1 (ORM1) OTZKSBRE A1AG1_HUMAN Affects Binding [18]
C-reactive protein (CRP) OT0RFT8F CRP_HUMAN Increases ADR [19]
Glutathione hydrolase 1 proenzyme (GGT1) OTYDA1Z7 GGT1_HUMAN Increases ADR [19]
Alkaline phosphatase, placental type (ALPP) OTZU4G9W PPB1_HUMAN Increases ADR [19]
Estrogen receptor (ESR1) OTKLU61J ESR1_HUMAN Increases Expression [20]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [21]
Kininogen-1 (KNG1) OT4X9LDE KNG1_HUMAN Decreases Activity [22]
Beta-nerve growth factor (NGF) OTOLABJT NGF_HUMAN Decreases Expression [7]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Decreases Expression [23]
Neurofilament medium polypeptide (NEFM) OT8VCBNF NFM_HUMAN Decreases Expression [7]
Alpha-1-acid glycoprotein 2 (ORM2) OTRJGZP8 A1AG2_HUMAN Affects Binding [18]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [24]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Decreases Expression [24]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [25]
Neuronatin (NNAT) OTNRLO7G NNAT_HUMAN Decreases Expression [7]
Transient receptor potential cation channel subfamily V member 1 (TRPV1) OTHHDR03 TRPV1_HUMAN Increases Activity [26]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Sulfation [27]
Histamine H1 receptor (HRH1) OT8F9FV6 HRH1_HUMAN Affects Binding [28]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases ADR [19]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Affects Response To Substance [29]
Sulfotransferase 1B1 (SULT1B1) OTH0RQYA ST1B1_HUMAN Increases Sulfation [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 DOT(s)
Indication(s) of Sevoflurane
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [5]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 3 [6]
Sevoflurane Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Glutamate receptor AMPA (GRIA) TTAN6JD NOUNIPROTAC Antagonist [30]
------------------------------------------------------------------------------------
Sevoflurane Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [31]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [32]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [33]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [12]
------------------------------------------------------------------------------------
Sevoflurane Interacts with 60 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Expression [34]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [35]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [35]
Glycine receptor subunit alpha-1 (GLRA1) OT05Y9ZR GLRA1_HUMAN Increases ADR [19]
Glutamate dehydrogenase 1, mitochondrial (GLUD1) OTXKOCUH DHE3_HUMAN Increases Expression [36]
Myc proto-oncogene protein (MYC) OTPV5LUK MYC_HUMAN Increases Expression [37]
GTPase HRas (HRAS) OTWQN0DP RASH_HUMAN Increases Expression [37]
GTPase KRas (KRAS) OT78QCN8 RASK_HUMAN Decreases Expression [37]
Progonadoliberin-1 (GNRH1) OTH8A44K GON1_HUMAN Increases Expression [37]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [37]
Fibronectin (FN1) OTB5ZN4Q FINC_HUMAN Increases Expression [37]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [34]
Insulin-like growth factor I (IGF1) OTIIZR61 IGF1_HUMAN Increases Expression [37]
Amyloid-beta precursor protein (APP) OTKFD7R4 A4_HUMAN Increases Expression [38]
Integrin beta-3 (ITGB3) OTWCK1K6 ITB3_HUMAN Decreases Expression [37]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Expression [37]
Solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) OTA675TJ GTR1_HUMAN Increases Expression [36]
Cadherin-1 (CDH1) OTFJMXPM CADH1_HUMAN Decreases Expression [37]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Increases Expression [37]
Hepatocyte growth factor (HGF) OTGHUA23 HGF_HUMAN Increases Expression [37]
Matrix metalloproteinase-9 (MMP9) OTB2QDAV MMP9_HUMAN Increases Expression [37]
Cyclic AMP-dependent transcription factor ATF-2 (ATF2) OTNIZPEA ATF2_HUMAN Increases Phosphorylation [39]
Sphingomyelin phosphodiesterase (SMPD1) OTZSMA54 ASM_HUMAN Decreases Activity [34]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [36]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [36]
Ephrin type-B receptor 2 (EPHB2) OT8VZ6C5 EPHB2_HUMAN Increases Expression [37]
Macrosialin (CD68) OTOYEY3J CD68_HUMAN Increases Expression [37]
Merlin (NF2) OT6E5ACG MERL_HUMAN Increases Expression [37]
Pigment epithelium-derived factor (SERPINF1) OTWZH98J PEDF_HUMAN Decreases Expression [36]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [35]
Cell surface glycoprotein MUC18 (MCAM) OTT8XKGE MUC18_HUMAN Decreases Expression [37]
Collagenase 3 (MMP13) OTY8BZIE MMP13_HUMAN Increases Expression [37]
Proliferation marker protein Ki-67 (MKI67) OTA8N1QI KI67_HUMAN Increases Expression [36]
Dual specificity mitogen-activated protein kinase kinase 3 (MAP2K3) OTI2OREX MP2K3_HUMAN Increases Phosphorylation [39]
Stromal cell-derived factor 1 (CXCL12) OT2QX5LL SDF1_HUMAN Increases Expression [36]
Dual specificity mitogen-activated protein kinase kinase 6 (MAP2K6) OTK13JKC MP2K6_HUMAN Increases Phosphorylation [39]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [40]
Beta-secretase 1 (BACE1) OTCA7B6A BACE1_HUMAN Increases Expression [38]
C-X-C chemokine receptor type 4 (CXCR4) OTUFSBX2 CXCR4_HUMAN Increases Expression [36]
Protein SET (SET) OTGYYQJO SET_HUMAN Increases Expression [37]
RNA-binding protein EWS (EWSR1) OT7SRHV3 EWS_HUMAN Increases Expression [37]
Urokinase plasminogen activator surface receptor (PLAUR) OTIRKKEQ UPAR_HUMAN Increases Expression [37]
Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A (MGAT5) OTU4DD4G MGT5A_HUMAN Increases Expression [37]
Metastasis-associated protein MTA1 (MTA1) OTBHW3S9 MTA1_HUMAN Increases Expression [37]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [35]
Integrin alpha-7 (ITGA7) OTTBTAYW ITA7_HUMAN Decreases Expression [37]
Interleukin-18 (IL18) OTBB2A8O IL18_HUMAN Increases Expression [37]
Metastasis-suppressor KiSS-1 (KISS1) OT6IE3K2 KISS1_HUMAN Decreases Expression [37]
Mothers against decapentaplegic homolog 2 (SMAD2) OTC6VB4K SMAD2_HUMAN Increases Expression [37]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [37]
KiSS-1 receptor (KISS1R) OTQA3J6G KISSR_HUMAN Decreases Expression [37]
FXYD domain-containing ion transport regulator 5 (FXYD5) OT81DIOD FXYD5_HUMAN Increases Expression [37]
Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) OTQR6ENW M3K5_HUMAN Increases Phosphorylation [39]
Oxidoreductase HTATIP2 (HTATIP2) OT9MZ4QO HTAI2_HUMAN Increases Expression [37]
Microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) OTUYHB84 MLP3B_HUMAN Increases Lipidation [35]
Autophagy protein 5 (ATG5) OT4T5SMS ATG5_HUMAN Increases Expression [35]
Pinin (PNN) OT0HXICH PININ_HUMAN Increases Expression [37]
Programmed cell death 1 ligand 1 (CD274) OTJ0VFDL PD1L1_HUMAN Decreases Expression [41]
Heparanase (HPSE) OTPTK5VS HPSE_HUMAN Increases Expression [37]
Mitochondrial pyruvate carrier 1 (MPC1) OT6DYFUO MPC1_HUMAN Increases Expression [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 60 DOT(s)

References

1 ClinicalTrials.gov (NCT04316013) Volatile Anaesthesia and Perioperative Outcomes Related to Cancer: The VAPOR-C Trial
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2623).
3 Lidocaine FDA Label
4 ClinicalTrials.gov (NCT00651313) Efficacy and Safety Study of Lidocaine Vaginal Gel for Recurrent Dysmenorrhea (Painful Periods). U.S. National Institutes of Health.
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7296).
6 Sevoflurane in COVID-19 ARDS (SevCov)
7 Lidocaine prevents breast cancer growth by targeting neuronatin to inhibit nerve fibers formation. J Toxicol Sci. 2021;46(7):329-339. doi: 10.2131/jts.46.329.
8 Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008 May-Jun;58(3):280-6.
9 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
10 Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese Han volunteers living at low altitude and in native Han and Tibetan Chinese volunteers living at high altitude. Pharmacology. 2016;97(3-4):107-13.
11 Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218.
12 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
13 Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.
14 Drug Interactions Flockhart Table
15 Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016 Sep;6(5):413-425.
16 The effect of mild and moderate hepatic impairment on the pharmacokinetics of valdecoxib, a selective COX-2 inhibitor. Eur J Clin Pharmacol. 2005 Jun;61(4):247-56.
17 Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004 Dec;32(12):1434-45. doi: 10.1124/dmd.104.001313. Epub 2004 Sep 21.
18 Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996 Oct;6(5):403-15. doi: 10.1097/00008571-199610000-00004.
19 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
20 Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry. Odontology. 2013 Jan;101(1):43-51.
21 Screening of a chemical library reveals novel PXR-activating pharmacologic compounds. Toxicol Lett. 2015 Jan 5;232(1):193-202. doi: 10.1016/j.toxlet.2014.10.009. Epub 2014 Oct 16.
22 Effects of capsaicin, bradykinin and prostaglandin E2 in the human skin. Br J Dermatol. 1992 Feb;126(2):111-7. doi: 10.1111/j.1365-2133.1992.tb07806.x.
23 [Influence of lidocaine on systemic inflammation in perioperative patients undergoing cardiopulmonary bypass]. Beijing Da Xue Xue Bao Yi Xue Ban. 2005 Dec 18;37(6):622-4.
24 Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010 Mar;92(3):609-18. doi: 10.2106/JBJS.H.01847.
25 Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicol Sci. 2013 Dec;136(2):581-94. doi: 10.1093/toxsci/kft205. Epub 2013 Sep 19.
26 The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest. 2008 Feb;118(2):763-76. doi: 10.1172/JCI32751.
27 Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos. 1999 Sep;27(9):1057-63.
28 H(1)R mediates local anesthetic-induced vascular permeability in angioedema. Toxicol Appl Pharmacol. 2020 Apr 1;392:114921. doi: 10.1016/j.taap.2020.114921. Epub 2020 Feb 12.
29 Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel. Circ Res. 2008 Aug 15;103(4):396-404. doi: 10.1161/CIRCRESAHA.108.172619. Epub 2008 Jul 3.
30 Effects of sevoflurane on carrageenan- and fentanyl-induced pain hypersensitivity in Sprague-Dawley rats. Can J Anaesth. 2009 Feb;56(2):126-35.
31 Identification of cytochrome P450 2E1 as the predominant enzyme catalyzing human liver microsomal defluorination of sevoflurane, isoflurane, and methoxyflurane. Anesthesiology. 1993 Oct;79(4):795-807.
32 Human kidney methoxyflurane and sevoflurane metabolism. Intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology. 1995 Mar;82(3):689-99.
33 Inhibition of cytochrome P450 2E1 by propofol in human and porcine liver microsomes. Biochem Pharmacol. 2002 Oct 1;64(7):1151-6.
34 Different apoptosis ratios and gene expressions in two human cell lines after sevoflurane anaesthesia. Acta Anaesthesiol Scand. 2009 Oct;53(9):1192-9. doi: 10.1111/j.1399-6576.2009.02036.x. Epub 2009 Jun 30.
35 4.8% sevoflurane induces activation of autophagy in human neuroblastoma SH-SY5Y cells by the AMPK/mTOR signaling pathway. Neurotoxicology. 2022 May;90:256-264. doi: 10.1016/j.neuro.2022.04.008. Epub 2022 Apr 23.
36 Sevoflurane but not propofol enhances ovarian cancer cell biology through regulating cellular metabolic and signaling mechanisms. Cell Biol Toxicol. 2023 Aug;39(4):1395-1411. doi: 10.1007/s10565-022-09766-6. Epub 2022 Oct 8.
37 The differential cancer growth associated with anaesthetics in a cancer xenograft model of mice: mechanisms and implications of postoperative cancer recurrence. Cell Biol Toxicol. 2023 Aug;39(4):1561-1575. doi: 10.1007/s10565-022-09747-9. Epub 2022 Aug 12.
38 The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels. Arch Neurol. 2009 May;66(5):620-31. doi: 10.1001/archneurol.2009.48.
39 Sevoflurane-mediated activation of p38-mitogen-activated stresskinase is independent of apoptosis in Jurkat T-cells. Anesth Analg. 2008 Apr;106(4):1150-60, table of contents. doi: 10.1213/ane.0b013e3181683d37.
40 Sevoflurane-induced oxidative stress and cellular injury in human peripheral polymorphonuclear neutrophils. Food Chem Toxicol. 2006 Aug;44(8):1399-407. doi: 10.1016/j.fct.2006.03.004. Epub 2006 Mar 29.
41 CircRNA VIM silence synergizes with sevoflurane to inhibit immune escape and multiple oncogenic activities of esophageal cancer by simultaneously regulating miR-124/PD-L1 axis. Cell Biol Toxicol. 2022 Oct;38(5):825-845. doi: 10.1007/s10565-021-09613-0. Epub 2021 May 20.