General Information of Drug Combination (ID: DCC47IA)

Drug Combination Name
Vandetanib Isoniazid
Indication
Disease Entry Status REF
Adenocarcinoma Investigative [1]
Component Drugs Vandetanib   DMRICNP Isoniazid   DM5JVS3
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: HCC-2998
Zero Interaction Potency (ZIP) Score: 3.96
Bliss Independence Score: 6.95
Loewe Additivity Score: 0.74
LHighest Single Agent (HSA) Score: 4.02

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Vandetanib
Disease Entry ICD 11 Status REF
Solid tumour/cancer 2A00-2F9Z Approved [2]
Vandetanib Interacts with 3 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Epidermal growth factor receptor (EGFR) TTGKNB4 EGFR_HUMAN Inhibitor [5]
Proto-oncogene c-Ret (RET) TT4DXQT RET_HUMAN Inhibitor [5]
Vascular endothelial growth factor receptor 2 (KDR) TTUTJGQ VGFR2_HUMAN Inhibitor [5]
------------------------------------------------------------------------------------
Vandetanib Interacts with 3 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [6]
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [7]
Organic anion transporting polypeptide 1B3 (SLCO1B3) DT9C1TS SO1B3_HUMAN Substrate [7]
------------------------------------------------------------------------------------
Vandetanib Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [8]
------------------------------------------------------------------------------------
Vandetanib Interacts with 34 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Proto-oncogene tyrosine-protein kinase receptor Ret (RET) OTLU040A RET_HUMAN Decreases Phosphorylation [9]
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) OTKOZRZP PLOD2_HUMAN Increases Expression [10]
Stearoyl-CoA desaturase (SCD) OTB1073G SCD_HUMAN Increases Expression [10]
Insulin-induced gene 1 protein (INSIG1) OTZF5X1D INSI1_HUMAN Increases Expression [10]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3-like (BNIP3L) OTJKOMXE BNI3L_HUMAN Increases Expression [10]
Protein FAM13A (FAM13A) OTZ6GN0Q FA13A_HUMAN Increases Expression [10]
Epidermal growth factor receptor (EGFR) OTAPLO1S EGFR_HUMAN Decreases Activity [11]
Phosphoglycerate kinase 1 (PGK1) OT6V1ICH PGK1_HUMAN Increases Expression [10]
Calbindin (CALB1) OTM7IXDG CALB1_HUMAN Increases Expression [10]
Prothymosin alpha (PTMA) OT2W4T1M PTMA_HUMAN Decreases Expression [10]
Trypsin-2 (PRSS2) OTOMVUWL TRY2_HUMAN Increases Expression [10]
Insulin-like growth factor-binding protein 1 (IGFBP1) OT6UQV2K IBP1_HUMAN Increases Expression [10]
Gamma-enolase (ENO2) OTRODL0T ENOG_HUMAN Increases Expression [10]
Solute carrier family 2, facilitated glucose transporter member 3 (SLC2A3) OT2HZK5M GTR3_HUMAN Increases Expression [10]
Mucin-1 (MUC1) OTHQI7IY MUC1_HUMAN Increases Expression [10]
Histone H1.2 (H1-2) OT0AVI4M H12_HUMAN Increases Expression [10]
Insulin-like growth factor-binding protein 3 (IGFBP3) OTIX63TX IBP3_HUMAN Increases Expression [10]
DNA mismatch repair protein Msh3 (MSH3) OTD3YPVL MSH3_HUMAN Decreases Expression [10]
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Secretion [12]
Dual specificity protein phosphatase 1 (DUSP1) OTN6BR75 DUS1_HUMAN Increases Expression [10]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [13]
Pro-adrenomedullin (ADM) OT7T0TA4 ADML_HUMAN Increases Expression [10]
Small ribosomal subunit protein eS6 (RPS6) OTT4D1LN RS6_HUMAN Decreases Phosphorylation [13]
Collagen alpha-3(IV) chain (COL4A3) OT6SB8X5 CO4A3_HUMAN Increases Expression [10]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Expression [14]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Decreases Phosphorylation [13]
Solute carrier family 2, facilitated glucose transporter member 14 (SLC2A14) OTBFIOVY GTR14_HUMAN Increases Expression [10]
Protein NDRG1 (NDRG1) OTVO66BO NDRG1_HUMAN Increases Expression [10]
TSC22 domain family protein 3 (TSC22D3) OT03UM03 T22D3_HUMAN Increases Expression [10]
Angiopoietin-related protein 4 (ANGPTL4) OTQL5SPX ANGL4_HUMAN Increases Expression [10]
Transcription factor SOX-17 (SOX17) OT9H4WWE SOX17_HUMAN Decreases Localization [15]
Lysine-specific demethylase 3A (KDM3A) OTZYJ8VN KDM3A_HUMAN Increases Expression [10]
Hypoxia-inducible lipid droplet-associated protein (HILPDA) OTEID3ZM HLPDA_HUMAN Increases Expression [10]
Insulin-induced gene 2 protein (INSIG2) OTX4VY51 INSI2_HUMAN Increases Expression [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 DOT(s)
Indication(s) of Isoniazid
Disease Entry ICD 11 Status REF
Latent tuberculosis infection N.A. Approved [3]
Pulmonary tuberculosis 1B10.Z Approved [3]
Tuberculosis 1B10-1B1Z Approved [4]
Isoniazid Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Bacterial Fatty acid synthetase I (Bact inhA) TTVTX4N INHA_MYCTU Inhibitor [17]
------------------------------------------------------------------------------------
Isoniazid Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [18]
Catalase-peroxidase (katG) DEAGY5M KATG_SYNE7 Metabolism [19]
Arylamine N-acetyltransferase (NAT) DEXCQTM A0A3P8LE58_TSUPA Metabolism [20]
------------------------------------------------------------------------------------
Isoniazid Interacts with 59 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Expression [21]
N-alpha-acetyltransferase 20 (NAA20) OTJB0VA6 NAA20_HUMAN Increases ADR [22]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [23]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [24]
Inhibin beta E chain (INHBE) OTOI2NYG INHBE_HUMAN Increases Expression [24]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [24]
Aldo-keto reductase family 1 member B10 (AKR1B10) OTOA4HTH AK1BA_HUMAN Increases Expression [16]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Secretion [16]
Interferon gamma (IFNG) OTXG9JM7 IFNG_HUMAN Increases Secretion [16]
C-X-C motif chemokine 10 (CXCL10) OTTLQ6S0 CXL10_HUMAN Increases Secretion [16]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Secretion [16]
NAD(P)H dehydrogenase 1 (NQO1) OTZGGIVK NQO1_HUMAN Increases Expression [16]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Secretion [16]
Interleukin-12 subunit alpha (IL12A) OTDQT8GI IL12A_HUMAN Increases Secretion [16]
Interleukin-12 subunit beta (IL12B) OT0JF8A3 IL12B_HUMAN Increases Secretion [16]
Interleukin-17A (IL17A) OTY72FT2 IL17_HUMAN Increases Secretion [16]
Sulfiredoxin-1 (SRXN1) OTYDBO4L SRXN1_HUMAN Increases Expression [16]
Gamma-butyrobetaine dioxygenase (BBOX1) OTKEX4RK BODG_HUMAN Increases Expression [25]
Alpha-fetoprotein (AFP) OT9GG3ZI FETA_HUMAN Decreases Expression [25]
Sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1) OTTO6ZP4 AT1B1_HUMAN Increases Expression [25]
Amyloid-beta precursor protein (APP) OTKFD7R4 A4_HUMAN Increases Expression [25]
Osteopontin (SPP1) OTJGC23Y OSTP_HUMAN Decreases Expression [25]
Mucin-1 (MUC1) OTHQI7IY MUC1_HUMAN Increases Expression [25]
14-3-3 protein sigma (SFN) OTLJCZ1U 1433S_HUMAN Decreases Expression [25]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Decreases Expression [25]
Glutamate--cysteine ligase regulatory subunit (GCLM) OT6CP234 GSH0_HUMAN Decreases Expression [25]
Claudin-2 (CLDN2) OTRF3D6Y CLD2_HUMAN Increases Expression [25]
Large neutral amino acids transporter small subunit 1 (SLC7A5) OT2WPVXD LAT1_HUMAN Decreases Expression [25]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Increases Expression [25]
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) OTKOZRZP PLOD2_HUMAN Increases Expression [26]
Transmembrane protease serine 2 (TMPRSS2) OTN44YQ5 TMPS2_HUMAN Affects Expression [27]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Increases Expression [28]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [28]
Albumin (ALB) OTVMM513 ALBU_HUMAN Affects Binding [29]
Antileukoproteinase (SLPI) OTUNFUU8 SLPI_HUMAN Increases Expression [28]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Activity [30]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [30]
Glucose-6-phosphate 1-dehydrogenase (G6PD) OT300SMK G6PD_HUMAN Decreases Activity [30]
5-aminolevulinate synthase, non-specific, mitochondrial (ALAS1) OTQY6ZSF HEM1_HUMAN Increases Expression [31]
Ferrochelatase, mitochondrial (FECH) OTDWEI6C HEMH_HUMAN Decreases Expression [31]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [21]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [21]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Increases Expression [28]
Peroxisome proliferator-activated receptor gamma (PPARG) OTHMARHO PPARG_HUMAN Decreases Expression [32]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [30]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [30]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [21]
Interleukin-24 (IL24) OT4VUWH1 IL24_HUMAN Increases Expression [28]
Nuclear respiratory factor 1 (NRF1) OTOXWNV8 NRF1_HUMAN Decreases Expression [33]
Natural cytotoxicity triggering receptor 3 ligand 1 (NCR3LG1) OT15YWU7 NR3L1_HUMAN Increases Expression [34]
PTB-containing, cubilin and LRP1-interacting protein (PID1) OT5YJ7FI PCLI1_HUMAN Increases Expression [28]
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) OTAYZMOY SIR1_HUMAN Decreases Expression [33]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Decreases Expression [27]
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) OTHCDQ22 PRGC1_HUMAN Decreases Expression [33]
Arylamine N-acetyltransferase 2 (NAT2) OTBPDQOY ARY2_HUMAN Decreases Acetylation [35]
Eosinophil peroxidase (EPX) OTFNDFOK PERE_HUMAN Increases Oxidation [36]
Myeloperoxidase (MPO) OTOOXLIN PERM_HUMAN Increases Oxidation [37]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Response To Substance [38]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Decreases Response To Substance [39]
------------------------------------------------------------------------------------
⏷ Show the Full List of 59 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Invasive ductal carcinoma DCSJ5JU BT-549 Investigative [40]
Clear cell renal cell carcinoma DCI23QT TK-10 Investigative [1]
Cutaneous melanoma DCWHA02 SK-MEL-28 Investigative [1]
Cutaneous melanoma DCPSVSO SK-MEL-5 Investigative [1]
Glioma DCJSPZJ SF-268 Investigative [1]
Melanoma DCTTD03 SK-MEL-2 Investigative [1]
Plasma cell myeloma DCQRN17 RPMI-8226 Investigative [1]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DrugCom(s)

References

1 Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.Hum Genet. 2018 Apr;137(4):293-303. doi: 10.1007/s00439-018-1882-3. Epub 2018 Apr 24.
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5717).
3 Isoniazid FDA Label
4 Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem. 2007;14(18):2000-8.
5 A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Curr Top Med Chem. 2007;7(14):1408-22.
6 Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences. Cancer Chemother Pharmacol. 2010 Jan;65(2):335-46.
7 Contribution of OATP1B1 and OATP1B3 to the disposition of sorafenib and sorafenib-glucuronide. Clin Cancer Res. 2013 Mar 15;19(6):1458-66.
8 FDA label of Vandetanib. The 2020 official website of the U.S. Food and Drug Administration.
9 The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol Cancer Ther. 2007 Apr;6(4):1300-9.
10 ZD6474 inhibits tumor growth and intraperitoneal dissemination in a highly metastatic orthotopic gastric cancer model. Int J Cancer. 2006 Jan 15;118(2):483-9. doi: 10.1002/ijc.21340.
11 Anticancer effects of ZD6474, a VEGF receptor tyrosine kinase inhibitor, in gefitinib ("Iressa")-sensitive and resistant xenograft models. Cancer Sci. 2004 Dec;95(12):984-9. doi: 10.1111/j.1349-7006.2004.tb03187.x.
12 Cytotoxicity of 34 FDA approved small-molecule kinase inhibitors in primary rat and human hepatocytes. Toxicol Lett. 2018 Jul;291:138-148. doi: 10.1016/j.toxlet.2018.04.010. Epub 2018 Apr 12.
13 Autophagy inhibition induces enhanced proapoptotic effects of ZD6474 in glioblastoma. Br J Cancer. 2013 Jul 9;109(1):164-71. doi: 10.1038/bjc.2013.306. Epub 2013 Jun 25.
14 Downregulation of hERG channel expression by tyrosine kinase inhibitors nilotinib and vandetanib predominantly contributes to arrhythmogenesis. Toxicol Lett. 2022 Jul 15;365:11-23. doi: 10.1016/j.toxlet.2022.06.001. Epub 2022 Jun 6.
15 A high-throughput screen for teratogens using human pluripotent stem cells. Toxicol Sci. 2014 Jan;137(1):76-90. doi: 10.1093/toxsci/kft239. Epub 2013 Oct 23.
16 Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017 Jul 1;158(1):76-89.
17 Diversity in enoyl-acyl carrier protein reductases. Cell Mol Life Sci. 2009 May;66(9):1507-17.
18 Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine. Biochem Pharmacol. 2005 Apr 1;69(7):1081-93.
19 Crystal structure of the catalase-peroxidase KatG W78F mutant from Synechococcus elongatus PCC7942 in complex with the antitubercular pro-drug isoniazid. FEBS Lett. 2015 Jan 2;589(1):131-7.
20 The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol. 2019 Oct 31;35(11):174.
21 Quercetin protected against isoniazide-induced HepG2 cell apoptosis by activating the SIRT1/ERK pathway. J Biochem Mol Toxicol. 2019 Sep;33(9):e22369. doi: 10.1002/jbt.22369. Epub 2019 Jul 23.
22 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
23 Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007.
24 Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007 Mar;96(1):101-14.
25 Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018 Aug;92(8):2517-2531.
26 Identification of differentially expressed genes in hepatic HepG2 cells treated with acetaminophen using suppression subtractive hybridization. Biol Pharm Bull. 2005 Jul;28(7):1148-53. doi: 10.1248/bpb.28.1148.
27 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
28 An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol. 2021 Jan;95(1):149-168. doi: 10.1007/s00204-020-02882-4. Epub 2020 Aug 20.
29 Auto-oxidation of Isoniazid Leads to Isonicotinic-Lysine Adducts on Human Serum Albumin. Chem Res Toxicol. 2015 Jan 20;28(1):51-8. doi: 10.1021/tx500285k. Epub 2014 Dec 9.
30 Isoniazid-induced apoptosis in HepG2 cells: generation of oxidative stress and Bcl-2 down-regulation. Toxicol Mech Methods. 2010 Jun;20(5):242-51. doi: 10.3109/15376511003793325.
31 The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicol Sci. 2019 Mar 1;168(1):209-224. doi: 10.1093/toxsci/kfy294.
32 Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol Appl Pharmacol. 2013 Dec 15;273(3):435-41. doi: 10.1016/j.taap.2013.10.005. Epub 2013 Oct 12.
33 AMPK activator acadesine fails to alleviate isoniazid-caused mitochondrial instability in HepG2 cells. J Appl Toxicol. 2017 Oct;37(10):1219-1224. doi: 10.1002/jat.3483. Epub 2017 May 29.
34 Enhanced activation of human NK cells by drug-exposed hepatocytes. Arch Toxicol. 2020 Feb;94(2):439-448. doi: 10.1007/s00204-020-02668-8. Epub 2020 Feb 14.
35 Effects of N-acetyltransferase 2 (NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci. 2008 May;33(2):187-95. doi: 10.2131/jts.33.187.
36 Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD(). Chem Biol Interact. 2019 May 25;305:48-53. doi: 10.1016/j.cbi.2019.03.019. Epub 2019 Mar 25.
37 Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol. 2016 Apr 15;106:46-55. doi: 10.1016/j.bcp.2016.02.003. Epub 2016 Feb 9.
38 Development of a highly sensitive cytotoxicity assay system for CYP3A4-mediated metabolic activation. Drug Metab Dispos. 2011 Aug;39(8):1388-95. doi: 10.1124/dmd.110.037077. Epub 2011 May 3.
39 Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol. 2018 Jan;92(1):383-399. doi: 10.1007/s00204-017-2036-4. Epub 2017 Jul 31.
40 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.