General Information of Drug Combination (ID: DCCS6IS)

Drug Combination Name
Epinephrine Propofol
Indication
Disease Entry Status REF
Hemodynamic Instability Phase 4 [1]
Component Drugs Epinephrine   DM3KJBC Propofol   DMB4OLE
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Epinephrine
Disease Entry ICD 11 Status REF
Acute asthma CA23 Approved [2]
Allergy 4A80-4A85 Approved [3]
Anaphylaxis N.A. Approved [2]
Bronchiectasis CA24 Approved [2]
Bronchitis CA20 Approved [2]
Periodontitis DA0C Approved [2]
Pulmonary emphysema CA21.Z Approved [2]
Severe asthma CA23 Approved [2]
Asthma CA23 Investigative [2]
Epinephrine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Adrenergic receptor beta-1 (ADRB1) TTR6W5O ADRB1_HUMAN Agonist [7]
------------------------------------------------------------------------------------
Epinephrine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 3 (SLC22A3) DT6201N S22A3_HUMAN Substrate [8]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Epinephrine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [10]
Sulfotransferase 1A1 (SULT1A1) DEYWLRK ST1A1_HUMAN Metabolism [11]
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Metabolism [12]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [13]
Monoamine oxidase type A (MAO-A) DERE4TU AOFA_HUMAN Metabolism [14]
------------------------------------------------------------------------------------
Epinephrine Interacts with 33 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [15]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [16]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Increases Expression [17]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [17]
Carbonic anhydrase 2 (CA2) OTJRMUAG CAH2_HUMAN Increases Expression [18]
Integrin alpha-V (ITGAV) OTAM7JTR ITAV_HUMAN Increases Expression [18]
Cathepsin K (CTSK) OTT3YX5O CATK_HUMAN Increases Expression [18]
Renin (REN) OT52GZR2 RENI_HUMAN Increases Activity [19]
Insulin (INS) OTZ85PDU INS_HUMAN Decreases Expression [20]
Beta-2 adrenergic receptor (ADRB2) OTSDOX4Q ADRB2_HUMAN Increases Activity [21]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Decreases Cleavage [22]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [22]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Increases Expression [22]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [22]
Alpha-1D adrenergic receptor (ADRA1D) OTW2CD1O ADA1D_HUMAN Increases Activity [23]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [24]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Increases Activity [23]
Alpha-1B adrenergic receptor (ADRA1B) OTSAYAFD ADA1B_HUMAN Increases Activity [23]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [24]
Tumor necrosis factor ligand superfamily member 6 (FASLG) OTZARCHH TNFL6_HUMAN Increases Expression [24]
Hexokinase-2 (HK2) OTC0GCQO HXK2_HUMAN Increases Expression [22]
Ephrin type-A receptor 4 (EPHA4) OT3AMK0C EPHA4_HUMAN Increases Phosphorylation [25]
Hormone-sensitive lipase (LIPE) OTMMVJ8A LIPS_HUMAN Increases Activity [26]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [22]
P2X purinoceptor 7 (P2RX7) OTNJ9XPL P2RX7_HUMAN Decreases Activity [27]
Leptin (LEP) OT5Q7ODW LEP_HUMAN Increases ADR [28]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Response To Substance [29]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Sulfation [30]
Glutathione reductase, mitochondrial (GSR) OTM2TUYM GSHR_HUMAN Increases ADR [28]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [31]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases ADR [28]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [16]
Alpha-2A adrenergic receptor (ADRA2A) OTZFGOTP ADA2A_HUMAN Increases ADR [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 DOT(s)
Indication(s) of Propofol
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [4]
Leukemia N.A. Approved [5]
Traumatic brain injury NA07.Z Approved [5]
Coronavirus Disease 2019 (COVID-19) 1D6Y Investigative [6]
Propofol Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Fatty acid amide hydrolase (FAAH) TTDP1UC NOUNIPROTAC Inhibitor [34]
------------------------------------------------------------------------------------
Propofol Interacts with 14 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [35]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [36]
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [37]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [38]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [39]
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [36]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [38]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [38]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [35]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [40]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [38]
UDP-glucuronosyltransferase 1A9 (UGT1A9) DE85D2P UD19_HUMAN Metabolism [41]
UDP-glucuronosyltransferase 1A6 (UGT1A6) DESD26P UD16_HUMAN Metabolism [42]
Oleamide hydrolase 1 (FAAH) DEUM1EX FAAH1_HUMAN Metabolism [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 14 DME(s)
Propofol Interacts with 58 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Carbonic anhydrase 1 (CA1) OTNFBVVQ CAH1_HUMAN Decreases Activity [44]
Carbonic anhydrase 2 (CA2) OTJRMUAG CAH2_HUMAN Decreases Activity [44]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Activity [45]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [45]
Cyclin-dependent kinase 1 (CDK1) OTW1SC2N CDK1_HUMAN Decreases Expression [45]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [45]
G2/mitotic-specific cyclin-B1 (CCNB1) OT19S7E5 CCNB1_HUMAN Decreases Expression [45]
G1/S-specific cyclin-D1 (CCND1) OT8HPTKJ CCND1_HUMAN Increases Expression [45]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Cleavage [45]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Cleavage [45]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [45]
Leucine-rich colipase-like protein 1 (LRCOL1) OTDXBZF8 LRCL1_HUMAN Decreases Expression [33]
Glutamate dehydrogenase 1, mitochondrial (GLUD1) OTXKOCUH DHE3_HUMAN Decreases Expression [46]
Progonadoliberin-1 (GNRH1) OTH8A44K GON1_HUMAN Increases Expression [47]
Prolactin (PRL) OTWFQGX7 PRL_HUMAN Increases Secretion [48]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Decreases Expression [47]
Interleukin-2 receptor subunit alpha (IL2RA) OT0MWCHG IL2RA_HUMAN Decreases Secretion [49]
Fibronectin (FN1) OTB5ZN4Q FINC_HUMAN Increases Expression [47]
Guanine nucleotide-binding protein G(i) subunit alpha-2 (GNAI2) OTTLGRGH GNAI2_HUMAN Decreases Expression [33]
Insulin-like growth factor I (IGF1) OTIIZR61 IGF1_HUMAN Increases Expression [47]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Decreases Expression [50]
72 kDa type IV collagenase (MMP2) OT5NIWA2 MMP2_HUMAN Decreases Expression [47]
Hepatocyte growth factor receptor (MET) OT7K55MU MET_HUMAN Increases Expression [47]
Small ribosomal subunit protein uS2 (RPSA) OTJZHEGT RSSA_HUMAN Increases Expression [47]
Matrilysin (MMP7) OTVT3SEJ MMP7_HUMAN Increases Expression [47]
Solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) OTA675TJ GTR1_HUMAN Decreases Expression [46]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Decreases Expression [33]
Proto-oncogene tyrosine-protein kinase Src (SRC) OTETYX40 SRC_HUMAN Increases Expression [47]
Metalloproteinase inhibitor 2 (TIMP2) OT8S1RRP TIMP2_HUMAN Increases Expression [47]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Expression [50]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [46]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [46]
Ephrin type-B receptor 2 (EPHB2) OT8VZ6C5 EPHB2_HUMAN Increases Expression [47]
3-oxo-5-alpha-steroid 4-dehydrogenase 2 (SRD5A2) OTTG0NFD S5A2_HUMAN Decreases Expression [33]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Decreases Phosphorylation [33]
Macrosialin (CD68) OTOYEY3J CD68_HUMAN Increases Expression [47]
Carbonic anhydrase 5A, mitochondrial (CA5A) OTP9M7VW CAH5A_HUMAN Decreases Expression [33]
Pigment epithelium-derived factor (SERPINF1) OTWZH98J PEDF_HUMAN Increases Expression [46]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [33]
Proliferation marker protein Ki-67 (MKI67) OTA8N1QI KI67_HUMAN Decreases Expression [46]
Stromal cell-derived factor 1 (CXCL12) OT2QX5LL SDF1_HUMAN Decreases Expression [46]
Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN (PTEN) OTOWDUNT PTEN_HUMAN Increases Expression [33]
C-X-C chemokine receptor type 4 (CXCR4) OTUFSBX2 CXCR4_HUMAN Decreases Expression [46]
Protein SET (SET) OTGYYQJO SET_HUMAN Decreases Expression [47]
RNA-binding protein EWS (EWSR1) OT7SRHV3 EWS_HUMAN Increases Expression [47]
Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A (MGAT5) OTU4DD4G MGT5A_HUMAN Increases Expression [47]
Interleukin-18 (IL18) OTBB2A8O IL18_HUMAN Increases Expression [47]
Mothers against decapentaplegic homolog 2 (SMAD2) OTC6VB4K SMAD2_HUMAN Decreases Expression [47]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Decreases Expression [46]
Transmembrane channel-like protein 6 (TMC6) OTKH50J4 TMC6_HUMAN Increases Expression [33]
Polycystin-1-like protein 3 (PKD1L3) OTQMYNOW PK1L3_HUMAN Decreases Expression [33]
Uncharacterized protein C10orf67, mitochondrial (C10ORF67) OTX24W0H CJ067_HUMAN Increases Expression [33]
Sodium-coupled neutral amino acid transporter 3 (SLC38A3) OTCHH25G S38A3_HUMAN Decreases Expression [33]
Oxidoreductase HTATIP2 (HTATIP2) OT9MZ4QO HTAI2_HUMAN Increases Expression [47]
Pinin (PNN) OT0HXICH PININ_HUMAN Decreases Expression [47]
Protein turtle homolog B (IGSF9B) OTNOMYYQ TUTLB_HUMAN Decreases Expression [33]
Heparanase (HPSE) OTPTK5VS HPSE_HUMAN Increases Expression [47]
Mitochondrial pyruvate carrier 1 (MPC1) OT6DYFUO MPC1_HUMAN Decreases Expression [46]
------------------------------------------------------------------------------------
⏷ Show the Full List of 58 DOT(s)

References

1 ClinicalTrials.gov (NCT02464722) Comparision Between Hemodynamic Response of Dexmedetomidine and Remifentanil on Anesthesia in Endoscopic Sinus Surgery
2 Epinephrine FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 509).
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 5464).
5 Propofol FDA Label
6 Propofol and sedation in patients with coronavirus disease. Am J Emerg Med. 2020 Jun 18;S0735-6757(20)30512-X.
7 Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G269-77.
8 Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006 Jun;50(8):941-52.
9 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
10 Steroid glucuronides: human circulatory levels and formation by LNCaP cells. J Steroid Biochem Mol Biol. 1991;40(4-6):593-8.
11 Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3'-phosphoadenosine 5'-phosphate. Biochem Biophys Res Commun. 2005 Sep 23;335(2):417-23.
12 Adrenal catecholamines and their metabolism in the vitamin A deficient rat. Ann Nutr Metab. 1983;27(3):220-7.
13 Different metabolism of norepinephrine and epinephrine by catechol-O-methyltransferase and monoamine oxidase in rats. J Pharmacol Exp Ther. 1994 Mar;268(3):1242-51.
14 Role of monoamine-oxidase-A-gene variation in the development of glioblastoma in males: a case control study. J Neurooncol. 2019 Nov;145(2):287-294.
15 Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol. 2001 Feb;59(2):393-402. doi: 10.1124/mol.59.2.393.
16 Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010 Dec;335(3):743-53. doi: 10.1124/jpet.110.170142. Epub 2010 Sep 21.
17 Epinephrine upregulates superoxide dismutase in human coronary artery endothelial cells. Free Radic Biol Med. 2001 Jan 15;30(2):148-53.
18 Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta. 2003 May 12;1640(2-3):137-42.
19 Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983 Dec 8;309(23):1414-9. doi: 10.1056/NEJM198312083092303.
20 A receptor mechanism for the inhibition of insulin release by epinephrine in man. J Clin Invest. 1967 Jan;46(1):86-94. doi: 10.1172/JCI105514.
21 Myocardial ischaemia and ventricular arrhthymias precipitated by physiological concentrations of adrenaline in patients with coronary artery disease. Br Heart J. 1992 May;67(5):419-20. doi: 10.1136/hrt.67.5.419-b.
22 Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023 Jan 5;369:110278. doi: 10.1016/j.cbi.2022.110278. Epub 2022 Nov 22.
23 Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc Res. 2004 Sep 1;63(4):662-72. doi: 10.1016/j.cardiores.2004.05.014.
24 Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc Res. 2000 Feb;45(3):788-94. doi: 10.1016/s0008-6363(99)00369-7.
25 The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets. 2012;23(8):617-25. doi: 10.3109/09537104.2011.645924. Epub 2012 Jan 24.
26 Hormone-sensitive lipase in human adipose tissue, isolated adipocytes, and cultured adipocytes. Pediatr Res. 1982 Dec;16(12):982-8. doi: 10.1203/00006450-198212000-00002.
27 Epidermal growth factor facilitates epinephrine inhibition of P2X7-receptor-mediated pore formation and apoptosis: a novel signaling network. Endocrinology. 2005 Jan;146(1):164-74. doi: 10.1210/en.2004-1026. Epub 2004 Sep 30.
28 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
29 Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro. Toxicol In Vitro. 2015 Feb;29(1):27-33. doi: 10.1016/j.tiv.2014.08.001. Epub 2014 Aug 27.
30 Enzymatic characterization and interspecies difference of phenol sulfotransferases, ST1A forms. Drug Metab Dispos. 2001 Mar;29(3):274-81.
31 Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One. 2019 Feb 12;14(2):e0211903. doi: 10.1371/journal.pone.0211903. eCollection 2019.
32 Effects of beta-estradiol and propofol on the 4-methylumbelliferone glucuronidation in recombinant human UGT isozymes 1A1, 1A8 and 1A9. Biopharm Drug Dispos. 2004 Nov;25(8):339-44.
33 Propofol suppresses proliferation, migration, invasion, and tumor growth of liver cancer cells via suppressing cancer susceptibility candidate 9/phosphatase and tensin homolog/AKT serine/threonine kinase/mechanistic target of rapamycin kinase axis. Hum Exp Toxicol. 2022 Jan-Dec;41:9603271211065972. doi: 10.1177/09603271211065972.
34 Glutamate- and GABA-based CNS therapeutics. Curr Opin Pharmacol. 2006 Feb;6(1):7-17.
35 Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology. 2001 Jan;94(1):110-9.
36 Inhibition of cytochrome P450 2E1 by propofol in human and porcine liver microsomes. Biochem Pharmacol. 2002 Oct 1;64(7):1151-6.
37 Substrate-dependent modulation of UDP-glucuronosyltransferase 1A1 (UGT1A1) by propofol in recombinant human UGT1A1 and human liver microsomes. Basic Clin Pharmacol Toxicol. 2007 Sep;101(3):211-4.
38 Possible involvement of multiple human cytochrome P450 isoforms in the liver metabolism of propofol. Br J Anaesth. 1998 Jun;80(6):788-95.
39 Effects of propofol on human hepatic microsomal cytochrome P450 activities. Xenobiotica. 1998 Sep;28(9):845-53.
40 Involvement of human cytochrome P450 2B6 in the omega- and 4-hydroxylation of the anesthetic agent propofol. Xenobiotica. 2007 Jul;37(7):717-24.
41 Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development. Curr Med Chem. 2009;16(27):3480-675.
42 Pharmacokinetics of propofol and extrahepatic UGT1A6 gene expression in anhepatic rats. Pharmacology. 2009;84(4):219-26.
43 Update of TTD: therapeutic target database. Nucleic Acids Res. 2010 Jan;38(Database issue):D787-91.
44 Carbonic anhydrase inhibitors. Inhibition of human erythrocyte isozymes I and II with a series of antioxidant phenols bioorg. Med Chem. 2009 Apr 15;17(8):3207-11.
45 Evaluation of cytotoxicity of propofol and its related mechanism in glioblastoma cells and astrocytes. Environ Toxicol. 2017 Dec;32(12):2440-2454.
46 Sevoflurane but not propofol enhances ovarian cancer cell biology through regulating cellular metabolic and signaling mechanisms. Cell Biol Toxicol. 2023 Aug;39(4):1395-1411. doi: 10.1007/s10565-022-09766-6. Epub 2022 Oct 8.
47 The differential cancer growth associated with anaesthetics in a cancer xenograft model of mice: mechanisms and implications of postoperative cancer recurrence. Cell Biol Toxicol. 2023 Aug;39(4):1561-1575. doi: 10.1007/s10565-022-09747-9. Epub 2022 Aug 12.
48 Propofol withdrawal seizures (or not). Seizure. 2008 Oct;17(7):665-7. doi: 10.1016/j.seizure.2008.03.004. Epub 2008 May 14.
49 Effects of different anaesthetic agents on immune cell function in vitro. Eur J Anaesthesiol. 2005 Aug;22(8):616-23. doi: 10.1017/s0265021505001031.
50 The effects of propofol on neutrophil function, lipid peroxidation and inflammatory response during elective coronary artery bypass grafting in patients with impaired ventricular function. Br J Anaesth. 2006 Dec;97(6):825-31. doi: 10.1093/bja/ael270. Epub 2006 Oct 9.