General Information of Drug Off-Target (DOT) (ID: OTM2TUYM)

DOT Name Glutathione reductase, mitochondrial (GSR)
Synonyms GR; GRase; EC 1.8.1.7
Gene Name GSR
Related Disease
Hemolytic anemia due to glutathione reductase deficiency ( )
UniProt ID
GSHR_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1ALG; 1BWC; 1DNC; 1GRA; 1GRB; 1GRE; 1GRF; 1GRG; 1GRH; 1GRT; 1GSN; 1K4Q; 1XAN; 2AAQ; 2GH5; 2GRT; 3DJG; 3DJJ; 3DK4; 3DK8; 3DK9; 3GRS; 3GRT; 3SQP; 4GR1; 4GRT; 5GRT
EC Number
1.8.1.7
Pfam ID
PF07992 ; PF02852
Sequence
MALLPRALSAGAGPSWRRAARAFRGFLLLLPEPAALTRALSRAMACRQEPQPQGPPPAAG
AVASYDYLVIGGGSGGLASARRAAELGARAAVVESHKLGGTCVNVGCVPKKVMWNTAVHS
EFMHDHADYGFPSCEGKFNWRVIKEKRDAYVSRLNAIYQNNLTKSHIEIIRGHAAFTSDP
KPTIEVSGKKYTAPHILIATGGMPSTPHESQIPGASLGITSDGFFQLEELPGRSVIVGAG
YIAVEMAGILSALGSKTSLMIRHDKVLRSFDSMISTNCTEELENAGVEVLKFSQVKEVKK
TLSGLEVSMVTAVPGRLPVMTMIPDVDCLLWAIGRVPNTKDLSLNKLGIQTDDKGHIIVD
EFQNTNVKGIYAVGDVCGKALLTPVAIAAGRKLAHRLFEYKEDSKLDYNNIPTVVFSHPP
IGTVGLTEDEAIHKYGIENVKTYSTSFTPMYHAVTKRKTKCVMKMVCANKEEKVVGIHMQ
GLGCDEMLQGFAVAVKMGATKADFDNTVAIHPTSSEELVTLR
Function Maintains high levels of reduced glutathione in the cytosol.
KEGG Pathway
Glutathione metabolism (hsa00480 )
Metabolic pathways (hsa01100 )
Thyroid hormone synthesis (hsa04918 )
Diabetic cardiomyopathy (hsa05415 )
Reactome Pathway
(Name not found )
Detoxification of Reactive Oxygen Species (R-HSA-3299685 )
BioCyc Pathway
MetaCyc:HS02602-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hemolytic anemia due to glutathione reductase deficiency DISPB5SZ Strong Autosomal recessive [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 4 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Doxorubicin DMVP5YE Approved Glutathione reductase, mitochondrial (GSR) decreases the response to substance of Doxorubicin. [63]
Cyclophosphamide DM4O2Z7 Approved Glutathione reductase, mitochondrial (GSR) increases the Pulmonary toxicity ADR of Cyclophosphamide. [64]
Epinephrine DM3KJBC Approved Glutathione reductase, mitochondrial (GSR) increases the Cell-mediated cytotoxicity ADR of Epinephrine. [64]
Ketoprofen DMRKXPT Approved Glutathione reductase, mitochondrial (GSR) increases the Gastrointestinal toxicity ADR of Ketoprofen. [64]
------------------------------------------------------------------------------------
74 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Glutathione reductase, mitochondrial (GSR). [2]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Glutathione reductase, mitochondrial (GSR). [3]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Glutathione reductase, mitochondrial (GSR). [4]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Glutathione reductase, mitochondrial (GSR). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Glutathione reductase, mitochondrial (GSR). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Glutathione reductase, mitochondrial (GSR). [7]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glutathione reductase, mitochondrial (GSR). [8]
Arsenic DMTL2Y1 Approved Arsenic increases the expression of Glutathione reductase, mitochondrial (GSR). [9]
Quercetin DM3NC4M Approved Quercetin increases the expression of Glutathione reductase, mitochondrial (GSR). [10]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Glutathione reductase, mitochondrial (GSR). [11]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide increases the activity of Glutathione reductase, mitochondrial (GSR). [12]
Testosterone DM7HUNW Approved Testosterone increases the expression of Glutathione reductase, mitochondrial (GSR). [13]
Triclosan DMZUR4N Approved Triclosan affects the expression of Glutathione reductase, mitochondrial (GSR). [14]
Marinol DM70IK5 Approved Marinol increases the activity of Glutathione reductase, mitochondrial (GSR). [15]
Menadione DMSJDTY Approved Menadione increases the expression of Glutathione reductase, mitochondrial (GSR). [16]
Fluorouracil DMUM7HZ Approved Fluorouracil decreases the activity of Glutathione reductase, mitochondrial (GSR). [15]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Glutathione reductase, mitochondrial (GSR). [17]
Cannabidiol DM0659E Approved Cannabidiol decreases the activity of Glutathione reductase, mitochondrial (GSR). [15]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Glutathione reductase, mitochondrial (GSR). [18]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Glutathione reductase, mitochondrial (GSR). [19]
Ethanol DMDRQZU Approved Ethanol decreases the activity of Glutathione reductase, mitochondrial (GSR). [20]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Glutathione reductase, mitochondrial (GSR). [21]
DTI-015 DMXZRW0 Approved DTI-015 decreases the activity of Glutathione reductase, mitochondrial (GSR). [22]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Glutathione reductase, mitochondrial (GSR). [23]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Glutathione reductase, mitochondrial (GSR). [24]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Glutathione reductase, mitochondrial (GSR). [23]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Glutathione reductase, mitochondrial (GSR). [23]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of Glutathione reductase, mitochondrial (GSR). [25]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of Glutathione reductase, mitochondrial (GSR). [25]
Lindane DMB8CNL Approved Lindane increases the expression of Glutathione reductase, mitochondrial (GSR). [19]
Glutathione DMAHMT9 Approved Glutathione decreases the activity of Glutathione reductase, mitochondrial (GSR). [26]
Clavulanate DM2FGRT Approved Clavulanate increases the expression of Glutathione reductase, mitochondrial (GSR). [27]
Benzoic acid DMKB9FI Approved Benzoic acid increases the expression of Glutathione reductase, mitochondrial (GSR). [21]
Riboflavin DM8YMWE Approved Riboflavin affects the expression of Glutathione reductase, mitochondrial (GSR). [28]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Glutathione reductase, mitochondrial (GSR). [29]
Silymarin DMXBYQR Phase 4 Silymarin increases the activity of Glutathione reductase, mitochondrial (GSR). [30]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Glutathione reductase, mitochondrial (GSR). [31]
Epigallocatechin gallate DMCGWBJ Phase 3 Epigallocatechin gallate increases the activity of Glutathione reductase, mitochondrial (GSR). [32]
Coprexa DMA0WEK Phase 3 Coprexa increases the expression of Glutathione reductase, mitochondrial (GSR). [33]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Glutathione reductase, mitochondrial (GSR). [34]
DNCB DMDTVYC Phase 2 DNCB increases the expression of Glutathione reductase, mitochondrial (GSR). [21]
PEITC DMOMN31 Phase 2 PEITC decreases the activity of Glutathione reductase, mitochondrial (GSR). [35]
Disulfiram DMCL2OK Phase 2 Trial Disulfiram increases the expression of Glutathione reductase, mitochondrial (GSR). [21]
E7850 DM8K5IF Phase 2 E7850 decreases the activity of Glutathione reductase, mitochondrial (GSR). [36]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Glutathione reductase, mitochondrial (GSR). [37]
Eugenol DM7US1H Patented Eugenol increases the expression of Glutathione reductase, mitochondrial (GSR). [21]
PMID26560530-Compound-25 DMZ43OM Patented PMID26560530-Compound-25 increases the activity of Glutathione reductase, mitochondrial (GSR). [38]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Glutathione reductase, mitochondrial (GSR). [39]
MG-132 DMKA2YS Preclinical MG-132 increases the expression of Glutathione reductase, mitochondrial (GSR). [40]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Glutathione reductase, mitochondrial (GSR). [41]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Glutathione reductase, mitochondrial (GSR). [42]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Glutathione reductase, mitochondrial (GSR). [43]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Glutathione reductase, mitochondrial (GSR). [44]
Paraquat DMR8O3X Investigative Paraquat decreases the activity of Glutathione reductase, mitochondrial (GSR). [45]
D-glucose DMMG2TO Investigative D-glucose decreases the activity of Glutathione reductase, mitochondrial (GSR). [46]
Manganese DMKT129 Investigative Manganese decreases the expression of Glutathione reductase, mitochondrial (GSR). [47]
cinnamaldehyde DMZDUXG Investigative cinnamaldehyde increases the expression of Glutathione reductase, mitochondrial (GSR). [48]
Chlorpyrifos DMKPUI6 Investigative Chlorpyrifos increases the expression of Glutathione reductase, mitochondrial (GSR). [49]
Microcystin-LR DMTMLRN Investigative Microcystin-LR decreases the activity of Glutathione reductase, mitochondrial (GSR). [50]
Aminohippuric acid DMUN54G Investigative Aminohippuric acid affects the expression of Glutathione reductase, mitochondrial (GSR). [51]
Rutin DMEHRAJ Investigative Rutin decreases the activity of Glutathione reductase, mitochondrial (GSR). [52]
(E)-4-(3,5-dimethoxystyryl)phenol DMYXI2V Investigative (E)-4-(3,5-dimethoxystyryl)phenol decreases the expression of Glutathione reductase, mitochondrial (GSR). [53]
2-tert-butylbenzene-1,4-diol DMNXI1E Investigative 2-tert-butylbenzene-1,4-diol increases the activity of Glutathione reductase, mitochondrial (GSR). [54]
Protoporphyrin IX DMWYE7A Investigative Protoporphyrin IX increases the expression of Glutathione reductase, mitochondrial (GSR). [40]
USNIC ACID DMGOURX Investigative USNIC ACID increases the expression of Glutathione reductase, mitochondrial (GSR). [55]
PATULIN DM0RV9C Investigative PATULIN decreases the activity of Glutathione reductase, mitochondrial (GSR). [56]
Syringic Acid DM802V7 Investigative Syringic Acid decreases the activity of Glutathione reductase, mitochondrial (GSR). [57]
methyl salicylate DMKCG8H Investigative methyl salicylate increases the expression of Glutathione reductase, mitochondrial (GSR). [21]
2-Propanol, Isopropanol DML5O0H Investigative 2-Propanol, Isopropanol increases the expression of Glutathione reductase, mitochondrial (GSR). [21]
THIOCTIC ACID DMNFCXW Investigative THIOCTIC ACID increases the expression of Glutathione reductase, mitochondrial (GSR). [58]
Indirubin-3'-monoxime DMLRQH0 Investigative Indirubin-3'-monoxime increases the expression of Glutathione reductase, mitochondrial (GSR). [59]
CYANATE DM6HQDL Investigative CYANATE decreases the activity of Glutathione reductase, mitochondrial (GSR). [60]
Pyrovalerone DMV48S2 Investigative Pyrovalerone decreases the activity of Glutathione reductase, mitochondrial (GSR). [61]
4-hexyl resorcinol DM36JUD Investigative 4-hexyl resorcinol increases the activity of Glutathione reductase, mitochondrial (GSR). [62]
------------------------------------------------------------------------------------
⏷ Show the Full List of 74 Drug(s)

References

1 Molecular basis of glutathione reductase deficiency in human blood cells. Blood. 2007 Apr 15;109(8):3560-6. doi: 10.1182/blood-2006-08-042531. Epub 2006 Dec 21.
2 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
3 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
4 Glutathione depletion in antioxidant defense of differentiated NT2-LHON cybrids. Neurobiol Dis. 2007 Mar;25(3):536-44.
5 Human 3D multicellular microtissues: an upgraded model for the in vitro mechanistic investigation of inflammation-associated drug toxicity. Toxicol Lett. 2019 Sep 15;312:34-44.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):117-27.
8 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
9 Combined effects of arsenic and palmitic acid on oxidative stress and lipid metabolism disorder in human hepatoma HepG2 cells. Sci Total Environ. 2021 May 15;769:144849. doi: 10.1016/j.scitotenv.2020.144849. Epub 2021 Jan 19.
10 Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem Biol Interact. 2012 Jan 25;195(2):154-64.
11 An approach to elucidate potential mechanism of renal toxicity of arsenic trioxide. Exp Hematol. 2007 Feb;35(2):252-62.
12 Comparison of characteristics of peroxide-conditioned immortal human lens-epithelial cell lines with their murine counterparts. Exp Eye Res. 2004 Sep;79(3):411-7.
13 Testosterone suppresses oxidative stress in human neutrophils. Cell Biochem Funct. 2010 Jul;28(5):394-402. doi: 10.1002/cbf.1669.
14 The modulatory effect of triclosan on the reversion of the activated phenotype of LX-2 hepatic stellate cells. J Biochem Mol Toxicol. 2020 Jan;34(1):e22413. doi: 10.1002/jbt.22413. Epub 2019 Nov 12.
15 Cytotoxic Effects of Cannabinoids on Human HT-29 Colorectal Adenocarcinoma Cells: Different Mechanisms of THC, CBD, and CB83. Int J Mol Sci. 2020 Aug 1;21(15):5533. doi: 10.3390/ijms21155533.
16 Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach. Toxicology. 2013 Apr 5;306:24-34.
17 Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis. PLoS One. 2012;7(1):e30443.
18 The proapoptotic effect of zoledronic acid is independent of either the bone microenvironment or the intrinsic resistance to bortezomib of myeloma cells and is enhanced by the combination with arsenic trioxide. Exp Hematol. 2011 Jan;39(1):55-65.
19 Oxidative stress mechanisms do not discriminate between genotoxic and nongenotoxic liver carcinogens. Chem Res Toxicol. 2015 Aug 17;28(8):1636-46.
20 Flavonoid composition of orange peel extract ameliorates alcohol-induced tight junction dysfunction in Caco-2 monolayer. Food Chem Toxicol. 2017 Jul;105:398-406.
21 Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol Sci. 2010 Sep;117(1):81-9.
22 Decreased GSSG reductase activity enhances cellular zinc toxicity in three human lung cell lines. Arch Toxicol. 2003 Mar;77(3):131-7. doi: 10.1007/s00204-002-0421-z. Epub 2003 Jan 4.
23 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
24 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
25 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
26 Comparison of inhibitory effects between acetaminophen-glutathione conjugate and reduced glutathione in human glutathione reductase. J Appl Toxicol. 2014 Sep;34(9):968-73.
27 Molecular mechanisms of hepatotoxic cholestasis by clavulanic acid: Role of NRF2 and FXR pathways. Food Chem Toxicol. 2021 Dec;158:112664. doi: 10.1016/j.fct.2021.112664. Epub 2021 Nov 9.
28 Riboflavin deficiency causes protein and DNA damage in HepG2 cells, triggering arrest in G1 phase of the cell cycle. J Nutr Biochem. 2006 Apr;17(4):250-6. doi: 10.1016/j.jnutbio.2005.05.004. Epub 2005 Jun 13.
29 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
30 Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes--an in vitro study. Toxicol Appl Pharmacol. 2010 Sep 1;247(2):116-28.
31 Interactive gene expression pattern in prostate cancer cells exposed to phenolic antioxidants. Life Sci. 2002 Mar 1;70(15):1821-39.
32 Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFB p65 signal pathway. Toxicol In Vitro. 2015 Oct;29(7):1766-78.
33 Copper chelator ATN-224 inhibits endothelial function by multiple mechanisms. Microvasc Res. 2009 May;77(3):314-26.
34 Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells. Mol Carcinog. 2006 Oct;45(10):752-63.
35 Glutathione- and thioredoxin-related enzymes are modulated by sulfur-containing chemopreventive agents. Biol Chem. 2007 Oct;388(10):1069-81.
36 Profiling patterns of glutathione reductase inhibition by the natural product illudin S and its acylfulvene analogues. Mol Biosyst. 2009 Sep;5(9):1013-24.
37 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
38 Protective effects of anethole dithiolethione against oxidative stress-induced cytotoxicity in human Jurkat T cells. Biochem Pharmacol. 1998 Jul 1;56(1):61-9.
39 The genome-wide expression profile of Scrophularia ningpoensis-treated thapsigargin-stimulated U-87MG cells. Neurotoxicology. 2009 May;30(3):368-76.
40 Differential effects of arsenic species on Nrf2 and Bach1 nuclear localization in cultured hepatocytes. Toxicol Appl Pharmacol. 2021 Feb 15;413:115404. doi: 10.1016/j.taap.2021.115404. Epub 2021 Jan 9.
41 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
42 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
43 Sulforaphane-induced apoptosis in human leukemia HL-60 cells through extrinsic and intrinsic signal pathways and altering associated genes expression assayed by cDNA microarray. Environ Toxicol. 2017 Jan;32(1):311-328.
44 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
45 MnTMPyP inhibits paraquat-induced pulmonary epithelial-like cell injury by inhibiting oxidative stress. J Toxicol Sci. 2018;43(9):545-555.
46 Novel oxolane derivative DMTD mitigates high glucose-induced erythrocyte apoptosis by regulating oxidative stress. Toxicol Appl Pharmacol. 2017 Nov 1;334:167-179.
47 Gene expression profiling of human primary astrocytes exposed to manganese chloride indicates selective effects on several functions of the cells. Neurotoxicology. 2007 May;28(3):478-89.
48 The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med. 2009 Jan 15;46(2):220-31.
49 The organophosphate chlorpyrifos disturbs redox balance and triggers antioxidant defense mechanisms in JEG-3 cells. Placenta. 2013 Sep;34(9):792-8.
50 -Lipoic acid protects against microcystin-LR induced hepatotoxicity through regeneration of glutathione via activation of Nrf2. Environ Toxicol. 2020 Jul;35(7):738-746. doi: 10.1002/tox.22908. Epub 2020 Feb 15.
51 Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). Toxicol Lett. 2012 Jul 7;212(1):18-28. doi: 10.1016/j.toxlet.2012.04.013. Epub 2012 May 1.
52 Influence of quercetin and rutin on growth and antioxidant defense system of a human hepatoma cell line (HepG2). Eur J Nutr. 2006 Feb;45(1):19-28.
53 Involvement of the Nrf2 pathway in the regulation of pterostilbene-induced apoptosis in HeLa cells via ER stress. J Pharmacol Sci. 2014;126(3):216-29.
54 Regulation of the glyoxalase pathway in human brain microvascular endothelium: effects of troglitazone and tertiary butylhydroperoxide. Endothelium. 2002;9(4):273-8.
55 Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells. Arch Toxicol. 2017 Mar;91(3):1293-1307.
56 Involvement of NADPH oxidase in patulin-induced oxidative damage and cytotoxicity in HEK293?cells. Food Chem Toxicol. 2021 Apr;150:112055. doi: 10.1016/j.fct.2021.112055. Epub 2021 Feb 9.
57 In vitro and in vivo anticancer effects of syringic acid on colorectal cancer: Possible mechanistic view. Chem Biol Interact. 2021 Mar 1;337:109337. doi: 10.1016/j.cbi.2020.109337. Epub 2021 Feb 4.
58 Cytoprotective effect of alpha-lipoic acid on paraquat-exposed human bronchial epithelial cells via activation of nuclear factor erythroid related factor-2 pathway. Biol Pharm Bull. 2013;36(5):802-11.
59 The effects of indirubin-3'-monoxime, a novel AHR ligand, on stress and toxicity-related gene/protein expression in human U937 cells undergoing differentiation and activation. J Immunotoxicol. 2006 Jan 1;3(1):1-10.
60 Isocyanates induces DNA damage, apoptosis, oxidative stress, and inflammation in cultured human lymphocytes. J Biochem Mol Toxicol. 2008 Nov-Dec;22(6):429-40.
61 -Pyrrolidinononanophenone provokes apoptosis of neuronal cells through alterations in antioxidant properties. Toxicology. 2017 Jul 1;386:93-102. doi: 10.1016/j.tox.2017.05.017. Epub 2017 May 31.
62 Effects of resveratrol and 4-hexylresorcinol on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes. Free Radic Res. 2003 May;37(5):509-14.
63 A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J. 2005 Nov;19(13):1866-8. doi: 10.1096/fj.04-2991fje. Epub 2005 Sep 13.
64 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.