General Information of Drug Combination (ID: DCE14KI)

Drug Combination Name
Epinephrine Dopamine
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Epinephrine   DM3KJBC Dopamine   DMPGUCF
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 8.13
Bliss Independence Score: 8.13
Loewe Additivity Score: 9.25
LHighest Single Agent (HSA) Score: 9.25

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Epinephrine
Disease Entry ICD 11 Status REF
Acute asthma CA23 Approved [2]
Allergy 4A80-4A85 Approved [3]
Anaphylaxis N.A. Approved [2]
Bronchiectasis CA24 Approved [2]
Bronchitis CA20 Approved [2]
Periodontitis DA0C Approved [2]
Pulmonary emphysema CA21.Z Approved [2]
Severe asthma CA23 Approved [2]
Asthma CA23 Investigative [2]
Epinephrine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Adrenergic receptor beta-1 (ADRB1) TTR6W5O ADRB1_HUMAN Agonist [6]
------------------------------------------------------------------------------------
Epinephrine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 3 (SLC22A3) DT6201N S22A3_HUMAN Substrate [7]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [8]
------------------------------------------------------------------------------------
Epinephrine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [9]
Sulfotransferase 1A1 (SULT1A1) DEYWLRK ST1A1_HUMAN Metabolism [10]
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Metabolism [11]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [12]
Monoamine oxidase type A (MAO-A) DERE4TU AOFA_HUMAN Metabolism [13]
------------------------------------------------------------------------------------
Epinephrine Interacts with 33 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [14]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [15]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Increases Expression [16]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [16]
Carbonic anhydrase 2 (CA2) OTJRMUAG CAH2_HUMAN Increases Expression [17]
Integrin alpha-V (ITGAV) OTAM7JTR ITAV_HUMAN Increases Expression [17]
Cathepsin K (CTSK) OTT3YX5O CATK_HUMAN Increases Expression [17]
Renin (REN) OT52GZR2 RENI_HUMAN Increases Activity [18]
Insulin (INS) OTZ85PDU INS_HUMAN Decreases Expression [19]
Beta-2 adrenergic receptor (ADRB2) OTSDOX4Q ADRB2_HUMAN Increases Activity [20]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Decreases Cleavage [21]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [21]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Increases Expression [21]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [21]
Alpha-1D adrenergic receptor (ADRA1D) OTW2CD1O ADA1D_HUMAN Increases Activity [22]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [23]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Increases Activity [22]
Alpha-1B adrenergic receptor (ADRA1B) OTSAYAFD ADA1B_HUMAN Increases Activity [22]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [23]
Tumor necrosis factor ligand superfamily member 6 (FASLG) OTZARCHH TNFL6_HUMAN Increases Expression [23]
Hexokinase-2 (HK2) OTC0GCQO HXK2_HUMAN Increases Expression [21]
Ephrin type-A receptor 4 (EPHA4) OT3AMK0C EPHA4_HUMAN Increases Phosphorylation [24]
Hormone-sensitive lipase (LIPE) OTMMVJ8A LIPS_HUMAN Increases Activity [25]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [21]
P2X purinoceptor 7 (P2RX7) OTNJ9XPL P2RX7_HUMAN Decreases Activity [26]
Leptin (LEP) OT5Q7ODW LEP_HUMAN Increases ADR [27]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Response To Substance [28]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Sulfation [29]
Glutathione reductase, mitochondrial (GSR) OTM2TUYM GSHR_HUMAN Increases ADR [27]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [30]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases ADR [27]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [15]
Alpha-2A adrenergic receptor (ADRA2A) OTZFGOTP ADA2A_HUMAN Increases ADR [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 DOT(s)
Indication(s) of Dopamine
Disease Entry ICD 11 Status REF
Acromegaly 5A60.0 Approved [4]
Carcinoid syndrome 5B10 Approved [4]
Parkinson disease 8A00.0 Approved [5]
Parkinsonian disorder N.A. Approved [4]
Postencephalitic Parkinson disease N.A. Approved [4]
Hypotension BA20-BA21 Phase 1 [5]
Dopamine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Dopamine D2 receptor (D2R) TTEX248 DRD2_HUMAN Agonist [34]
------------------------------------------------------------------------------------
Dopamine Interacts with 6 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 2 (SLC22A2) DT9IDPW S22A2_HUMAN Substrate [7]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [35]
Vesicular amine transporter 2 (SLC18A2) DTT7VPB VMAT2_HUMAN Substrate [36]
Vesicular amine transporter 1 (SLC18A1) DTM953D VMAT1_HUMAN Substrate [36]
Synaptic vesicle glycoprotein 2C (SLC22B3) DT7A9GF SV2C_HUMAN Substrate [37]
Sodium-dependent dopamine transporter (SLC6A3) DT3BA8L SC6A3_HUMAN Substrate [38]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DTP(s)
Dopamine Interacts with 8 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [39]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [40]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [40]
Mephenytoin 4-hydroxylase (CYP2C19) DEGTFWK CP2CJ_HUMAN Metabolism [40]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [41]
Monoamine oxidase type B (MAO-B) DET2NXO AOFB_HUMAN Metabolism [42]
Sulfotransferase 1B1 (SULT1B1) DED5UR3 ST1B1_HUMAN Metabolism [43]
Dopamine dehydroxylase (dadH) DEL0D64 DADH_EGGLN Metabolism [44]
------------------------------------------------------------------------------------
⏷ Show the Full List of 8 DME(s)
Dopamine Interacts with 76 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 2D6 (CYP2D6) OTZJC802 CP2D6_HUMAN Increases Abundance [45]
Amine oxidase B (MAOB) OTTDFM1O AOFB_HUMAN Decreases Amination [46]
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [14]
Sodium-dependent dopamine transporter (SLC6A3) OT39XG28 SC6A3_HUMAN Increases Activity [47]
Synaptic vesicular amine transporter (SLC18A2) OTUOMMM6 VMAT2_HUMAN Decreases Activity [48]
Glial fibrillary acidic protein (GFAP) OTQ01ZAS GFAP_HUMAN Increases ADR [27]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [49]
BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) OT4SO7J4 BNIP3_HUMAN Increases Expression [49]
Bcl-2-binding component 3, isoforms 3/4 (BBC3) OTUAXDAY BBC3B_HUMAN Increases Expression [49]
Glutathione S-transferase A1 (GSTA1) OTA7K5XA GSTA1_HUMAN Decreases Activity [50]
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Decreases Activity [50]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Decreases Activity [50]
Methionine synthase (MTR) OTF2K2TA METH_HUMAN Increases Activity [51]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Activity [52]
POTE ankyrin domain family member F (POTEF) OTV3WXYE POTEF_HUMAN Increases Expression [31]
Citrate synthase, mitochondrial (CS) OTYLYXMO CISY_HUMAN Increases Expression [31]
ATP synthase subunit d, mitochondrial (ATP5PD) OTAJDLE2 ATP5H_HUMAN Increases Expression [31]
Prelamin-A/C (LMNA) OT3SG7ZR LMNA_HUMAN Increases Expression [31]
Fructose-bisphosphate aldolase A (ALDOA) OTWRFTIB ALDOA_HUMAN Increases Expression [31]
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) OTBPMIMW G3P_HUMAN Increases Expression [31]
ADP/ATP translocase 2 (SLC25A5) OT1XIBMN ADT2_HUMAN Increases Expression [31]
Cathepsin D (CTSD) OTQZ36F3 CATD_HUMAN Increases Expression [31]
Heat shock protein HSP 90-beta (HSP90AB1) OTR69EG7 HS90B_HUMAN Increases Expression [31]
Small ribosomal subunit protein uS2 (RPSA) OTJZHEGT RSSA_HUMAN Increases Expression [31]
POTE ankyrin domain family member I (POTEI) OTST4AVP POTEI_HUMAN Decreases Expression [31]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases Expression [31]
ADP/ATP translocase 3 (SLC25A6) OT9KAJP7 ADT3_HUMAN Increases Expression [31]
Annexin A3 (ANXA3) OTDD8OI7 ANXA3_HUMAN Increases Expression [31]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [31]
Endoplasmin (HSP90B1) OT02XLBR ENPL_HUMAN Increases Expression [31]
Histone H1.5 (H1-5) OTAN7RD9 H15_HUMAN Increases Expression [31]
Heat shock 70 kDa protein 6 (HSPA6) OTH4S7WB HSP76_HUMAN Increases Expression [31]
Nucleolin (NCL) OTBXPKMP NUCL_HUMAN Increases Expression [31]
Cofilin-1 (CFL1) OTT6D5MH COF1_HUMAN Increases Expression [31]
Myristoylated alanine-rich C-kinase substrate (MARCKS) OT7N056G MARCS_HUMAN Increases Expression [31]
Thioredoxin-dependent peroxide reductase, mitochondrial (PRDX3) OTLB2WEU PRDX3_HUMAN Increases Expression [31]
Protein disulfide-isomerase A3 (PDIA3) OTHPQ0Q3 PDIA3_HUMAN Decreases Expression [31]
Serine hydroxymethyltransferase, mitochondrial (SHMT2) OT5NCAZN GLYM_HUMAN Increases Expression [31]
Prohibitin 1 (PHB1) OTZNXYS2 PHB1_HUMAN Increases Expression [31]
Stress-70 protein, mitochondrial (HSPA9) OT4TMVS9 GRP75_HUMAN Increases Expression [31]
Actin, cytoplasmic 1 (ACTB) OT1MCP2F ACTB_HUMAN Affects Expression [31]
Small ribosomal subunit protein RACK1 (RACK1) OTZBCQ1U RACK1_HUMAN Increases Expression [31]
Elongation factor 1-alpha 1 (EEF1A1) OT00THXS EF1A1_HUMAN Increases Expression [31]
Single-stranded DNA-binding protein, mitochondrial (SSBP1) OTH2PZWH SSBP_HUMAN Increases Expression [31]
Complement component 1 Q subcomponent-binding protein, mitochondrial (C1QBP) OTPYQX3K C1QBP_HUMAN Increases Expression [31]
Beta-actin-like protein 2 (ACTBL2) OTD6B81U ACTBL_HUMAN Decreases Expression [31]
5'-3' exonuclease PLD3 (PLD3) OTL07SP2 PLD3_HUMAN Affects Expression [31]
Septin-9 (SEPTIN9) OT1VMRFQ SEPT9_HUMAN Decreases Expression [31]
RuvB-like 1 (RUVBL1) OTWV19L7 RUVB1_HUMAN Increases Expression [31]
E3 ubiquitin-protein ligase parkin (PRKN) OTJBN41W PRKN_HUMAN Increases Expression [53]
Brain mitochondrial carrier protein 1 (SLC25A14) OT1ZQSKS UCP5_HUMAN Increases Expression [54]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Affects Binding [55]
Prolactin (PRL) OTWFQGX7 PRL_HUMAN Decreases Expression [56]
Insulin (INS) OTZ85PDU INS_HUMAN Increases Expression [57]
Transcription factor Jun (JUN) OTCYBO6X JUN_HUMAN Increases Phosphorylation [58]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [58]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [59]
D(1A) dopamine receptor (DRD1) OTLZPBT7 DRD1_HUMAN Increases Activity [60]
Protein-L-isoaspartate(D-aspartate) O-methyltransferase (PCMT1) OTGYVSGU PIMT_HUMAN Decreases Expression [61]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Decreases Phosphorylation [49]
Serine/threonine-protein kinase mTOR (MTOR) OTHH8KU7 MTOR_HUMAN Decreases Phosphorylation [49]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [49]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [49]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Decreases Expression [49]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [49]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Metabolism [62]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Uptake [63]
Tyrosine 3-monooxygenase (TH) OT6ZORKP TY3H_HUMAN Increases Chemical Synthesis [64]
Amine oxidase A (MAOA) OT8NIWMQ AOFA_HUMAN Decreases Amination [46]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Metabolism [62]
Alpha-synuclein (SNCA) OTPWC1MR SYUA_HUMAN Increases Response To Substance [65]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [30]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [15]
Secretin (SCT) OTV3MLOO SECR_HUMAN Increases Metabolism [66]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [15]
GDP-mannose 4,6 dehydratase (GMDS) OTWV79YD GMDS_HUMAN Increases ADR [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 76 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Epinephrine FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 509).
4 Dopamine FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 940).
6 Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G269-77.
7 Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006 Jun;50(8):941-52.
8 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
9 Steroid glucuronides: human circulatory levels and formation by LNCaP cells. J Steroid Biochem Mol Biol. 1991;40(4-6):593-8.
10 Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3'-phosphoadenosine 5'-phosphate. Biochem Biophys Res Commun. 2005 Sep 23;335(2):417-23.
11 Adrenal catecholamines and their metabolism in the vitamin A deficient rat. Ann Nutr Metab. 1983;27(3):220-7.
12 Different metabolism of norepinephrine and epinephrine by catechol-O-methyltransferase and monoamine oxidase in rats. J Pharmacol Exp Ther. 1994 Mar;268(3):1242-51.
13 Role of monoamine-oxidase-A-gene variation in the development of glioblastoma in males: a case control study. J Neurooncol. 2019 Nov;145(2):287-294.
14 Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol. 2001 Feb;59(2):393-402. doi: 10.1124/mol.59.2.393.
15 Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010 Dec;335(3):743-53. doi: 10.1124/jpet.110.170142. Epub 2010 Sep 21.
16 Epinephrine upregulates superoxide dismutase in human coronary artery endothelial cells. Free Radic Biol Med. 2001 Jan 15;30(2):148-53.
17 Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta. 2003 May 12;1640(2-3):137-42.
18 Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983 Dec 8;309(23):1414-9. doi: 10.1056/NEJM198312083092303.
19 A receptor mechanism for the inhibition of insulin release by epinephrine in man. J Clin Invest. 1967 Jan;46(1):86-94. doi: 10.1172/JCI105514.
20 Myocardial ischaemia and ventricular arrhthymias precipitated by physiological concentrations of adrenaline in patients with coronary artery disease. Br Heart J. 1992 May;67(5):419-20. doi: 10.1136/hrt.67.5.419-b.
21 Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023 Jan 5;369:110278. doi: 10.1016/j.cbi.2022.110278. Epub 2022 Nov 22.
22 Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc Res. 2004 Sep 1;63(4):662-72. doi: 10.1016/j.cardiores.2004.05.014.
23 Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc Res. 2000 Feb;45(3):788-94. doi: 10.1016/s0008-6363(99)00369-7.
24 The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets. 2012;23(8):617-25. doi: 10.3109/09537104.2011.645924. Epub 2012 Jan 24.
25 Hormone-sensitive lipase in human adipose tissue, isolated adipocytes, and cultured adipocytes. Pediatr Res. 1982 Dec;16(12):982-8. doi: 10.1203/00006450-198212000-00002.
26 Epidermal growth factor facilitates epinephrine inhibition of P2X7-receptor-mediated pore formation and apoptosis: a novel signaling network. Endocrinology. 2005 Jan;146(1):164-74. doi: 10.1210/en.2004-1026. Epub 2004 Sep 30.
27 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
28 Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro. Toxicol In Vitro. 2015 Feb;29(1):27-33. doi: 10.1016/j.tiv.2014.08.001. Epub 2014 Aug 27.
29 Enzymatic characterization and interspecies difference of phenol sulfotransferases, ST1A forms. Drug Metab Dispos. 2001 Mar;29(3):274-81.
30 Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One. 2019 Feb 12;14(2):e0211903. doi: 10.1371/journal.pone.0211903. eCollection 2019.
31 Mitochondrial proteomics investigation of a cellular model of impaired dopamine homeostasis, an early step in Parkinson's disease pathogenesis. Mol Biosyst. 2014 Jun;10(6):1332-44.
32 Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience. 2016 Oct 1;333:193-203. doi: 10.1016/j.neuroscience.2016.07.020. Epub 2016 Jul 20.
33 Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Mol Psychiatry. 2011 Sep;16(9):927-37, 881. doi: 10.1038/mp.2011.32. Epub 2011 Apr 19.
34 The Detection of Dopamine Gene Receptors (DRD1-DRD5) Expression on Human Peripheral Blood Lymphocytes by Real Time PCR. Iran J Allergy Asthma Immunol. 2004 Dec;3(4):169-74.
35 Organic cation transporters and their pharmacokinetic and pharmacodynamic consequences. Drug Metab Pharmacokinet. 2008;23(4):243-53.
36 SLC18: Vesicular neurotransmitter transporters for monoamines and acetylcholine. Mol Aspects Med. 2013 Apr-Jun;34(2-3):360-72.
37 Synaptic vesicle glycoprotein 2C (SV2C) modulates dopamine release and is disrupted in Parkinson disease. Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2253-E2262.
38 Characterization of VNTRs Within the Entire Region of SLC6A3 and Its Association with Hypertension. DNA Cell Biol. 2017 Mar;36(3):227-236.
39 Modulation of CYP1A2 enzyme activity by indoleamines: inhibition by serotonin and tryptamine. Pharmacogenetics. 1998 Jun;8(3):251-8.
40 Pharmacogenetics of schizophrenia. Am J Med Genet. 2000 Spring;97(1):98-106.
41 Association between polymorphisms in catechol-O-methyltransferase (COMT) and cocaine-induced paranoia in European-American and African-American populations. Am J Med Genet B Neuropsychiatr Genet. 2011 Sep;156B(6):651-60.
42 Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta. 2011 Jul;1813(7):1323-32.
43 Molecular cloning, expression, and functional characterization of novel mouse sulfotransferases. Biochem Biophys Res Commun. 1998 Jun 29;247(3):681-6.
44 Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019 Jun 14;364(6445). pii: eaau6323.
45 Effect of penicillin-based antibiotics, amoxicillin, ampicillin, and piperacillin, on drug-metabolizing activities of human hepatic cytochromes P450. J Toxicol Sci. 2016 Feb;41(1):143-6.
46 Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine. Toxicol Lett. 2016 Jan 22;243:48-55.
47 Functional characterization of N-octyl 4-methylamphetamine variants and related bivalent compounds at the dopamine and serotonin transporters using Ca(2+) channels as sensors. Toxicol Appl Pharmacol. 2021 May 15;419:115513. doi: 10.1016/j.taap.2021.115513. Epub 2021 Mar 27.
48 The effect of rare human sequence variants on the function of vesicular monoamine transporter 2. Pharmacogenetics. 2004 Sep;14(9):587-94. doi: 10.1097/00008571-200409000-00003.
49 Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model. Neurotoxicology. 2009 Jul;30(4):658-65. doi: 10.1016/j.neuro.2009.04.007. Epub 2009 May 4.
50 Inhibition of human glutathione S-transferases by dopamine, alpha-methyldopa and their 5-S-glutathionyl conjugates. Chem Biol Interact. 1994 Jan;90(1):87-99.
51 Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry. 2004 Apr;9(4):358-70.
52 Functional expression and comparative characterization of nine murine cytochromes P450 by fluorescent inhibition screening. Drug Metab Dispos. 2008 Jul;36(7):1322-31.
53 Induction of parkin expression in the presence of oxidative stress. Eur J Neurosci. 2006 Sep;24(5):1366-72. doi: 10.1111/j.1460-9568.2006.04998.x.
54 Mitochondrial UCP5 is neuroprotective by preserving mitochondrial membrane potential, ATP levels, and reducing oxidative stress in MPP+ and dopamine toxicity. Free Radic Biol Med. 2010 Sep 15;49(6):1023-35. doi: 10.1016/j.freeradbiomed.2010.06.017. Epub 2010 Jun 19.
55 Ligand binding and aggregation of pathogenic SOD1. Nat Commun. 2013;4:1758. doi: 10.1038/ncomms2750.
56 Dose-dependent separation of dopaminergic and adrenergic effects of epinine in healthy volunteers. Naunyn Schmiedebergs Arch Pharmacol. 1995 Oct;352(4):429-37. doi: 10.1007/BF00172781.
57 Effect of drugs interacting with the dopaminergic receptors on glucose levels and insulin release in healthy and type 2 diabetic subjects. Am J Ther. 2008 Jul-Aug;15(4):397-402. doi: 10.1097/MJT.0b013e318160c353.
58 Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet. 2004 Aug 15;13(16):1745-54. doi: 10.1093/hmg/ddh180. Epub 2004 Jun 15.
59 Resveratrol protects SH-SY5Y neuroblastoma cells from apoptosis induced by dopamine. Exp Mol Med. 2007 Jun 30;39(3):376-84. doi: 10.1038/emm.2007.42.
60 Characterizing fucoxanthin as a selective dopamine D(3)/D(4) receptor agonist: Relevance to Parkinson's disease. Chem Biol Interact. 2019 Sep 1;310:108757. doi: 10.1016/j.cbi.2019.108757. Epub 2019 Jul 16.
61 Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells. Neuroscience. 2014 May 16;267:263-76. doi: 10.1016/j.neuroscience.2014.03.001. Epub 2014 Mar 12.
62 Sulfation of environmental estrogen-like chemicals by human cytosolic sulfotransferases. Biochem Biophys Res Commun. 2000 Jan 7;267(1):80-4. doi: 10.1006/bbrc.1999.1935.
63 Role of tumor necrosis factor-alpha in methamphetamine-induced drug dependence and neurotoxicity. J Neurosci. 2004 Mar 3;24(9):2212-25. doi: 10.1523/JNEUROSCI.4847-03.2004.
64 Expression of tyrosine hydroxylase increases the resistance of human neuroblastoma cells to oxidative insults. Toxicol Sci. 2010 Jan;113(1):150-7. doi: 10.1093/toxsci/kfp245. Epub 2009 Oct 8.
65 G209A mutant alpha synuclein expression specifically enhances dopamine induced oxidative damage. Neurochem Int. 2004 Oct;45(5):669-76. doi: 10.1016/j.neuint.2004.03.029.
66 Administration of secretin for autism alters dopamine metabolism in the central nervous system. Brain Dev. 2006 Mar;28(2):99-103. doi: 10.1016/j.braindev.2005.05.005. Epub 2005 Sep 15.