General Information of Drug Off-Target (DOT) (ID: OT11E62Y)

DOT Name Spermine oxidase (SMOX)
Synonyms EC 1.5.3.16; Polyamine oxidase 1; PAO-1; PAOh1
Gene Name SMOX
UniProt ID
SMOX_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
7OXL; 7OY0
EC Number
1.5.3.16
Pfam ID
PF01593
Sequence
MQSCESSGDSADDPLSRGLRRRGQPRVVVIGAGLAGLAAAKALLEQGFTDVTVLEASSHI
GGRVQSVKLGHATFELGATWIHGSHGNPIYHLAEANGLLEETTDGERSVGRISLYSKNGV
ACYLTNHGRRIPKDVVEEFSDLYNEVYNLTQEFFRHDKPVNAESQNSVGVFTREEVRNRI
RNDPDDPEATKRLKLAMIQQYLKVESCESSSHSMDEVSLSAFGEWTEIPGAHHIIPSGFM
RVVELLAEGIPAHVIQLGKPVRCIHWDQASARPRGPEIEPRGEGDHNHDTGEGGQGGEEP
RGGRWDEDEQWSVVVECEDCELIPADHVIVTVSLGVLKRQYTSFFRPGLPTEKVAAIHRL
GIGTTDKIFLEFEEPFWGPECNSLQFVWEDEAESHTLTYPPELWYRKICGFDVLYPPERY
GHVLSGWICGEEALVMEKCDDEAVAEICTEMLRQFTGNPNIPKPRRILRSAWGSNPYFRG
SYSYTQVGSSGADVEKLAKPLPYTESSKTAPMQVLFSGEATHRKYYSTTHGALLSGQREA
ARLIEMYRDLFQQGT
Function
Flavoenzyme which catalyzes the oxidation of spermine to spermidine. Can also use N(1)-acetylspermine and spermidine as substrates, with different affinity depending on the isoform (isozyme) and on the experimental conditions. Plays an important role in the regulation of polyamine intracellular concentration and has the potential to act as a determinant of cellular sensitivity to the antitumor polyamine analogs. May contribute to beta-alanine production via aldehyde dehydrogenase conversion of 3-amino-propanal.
Tissue Specificity Widely expressed. Expressed in human tumor cell lines. Isoform 4 is only found in an embryonal kidney cell line.
KEGG Pathway
Arginine and proline metabolism (hsa00330 )
beta-Alanine metabolism (hsa00410 )
Metabolic pathways (hsa01100 )
BioCyc Pathway
MetaCyc:HS01609-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Spermine DMD4BFY Terminated Spermine oxidase (SMOX) increases the oxidation of Spermine. [29]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Spermine oxidase (SMOX). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Spermine oxidase (SMOX). [22]
------------------------------------------------------------------------------------
36 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Spermine oxidase (SMOX). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Spermine oxidase (SMOX). [3]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Spermine oxidase (SMOX). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Spermine oxidase (SMOX). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Spermine oxidase (SMOX). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Spermine oxidase (SMOX). [7]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Spermine oxidase (SMOX). [8]
Quercetin DM3NC4M Approved Quercetin increases the expression of Spermine oxidase (SMOX). [9]
Temozolomide DMKECZD Approved Temozolomide increases the expression of Spermine oxidase (SMOX). [10]
Calcitriol DM8ZVJ7 Approved Calcitriol increases the expression of Spermine oxidase (SMOX). [11]
Testosterone DM7HUNW Approved Testosterone increases the expression of Spermine oxidase (SMOX). [11]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Spermine oxidase (SMOX). [12]
Selenium DM25CGV Approved Selenium increases the expression of Spermine oxidase (SMOX). [13]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Spermine oxidase (SMOX). [14]
Menadione DMSJDTY Approved Menadione affects the expression of Spermine oxidase (SMOX). [15]
Fulvestrant DM0YZC6 Approved Fulvestrant decreases the expression of Spermine oxidase (SMOX). [16]
Dexamethasone DMMWZET Approved Dexamethasone decreases the expression of Spermine oxidase (SMOX). [17]
Niclosamide DMJAGXQ Approved Niclosamide increases the expression of Spermine oxidase (SMOX). [18]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Spermine oxidase (SMOX). [16]
Azathioprine DMMZSXQ Approved Azathioprine increases the expression of Spermine oxidase (SMOX). [19]
Estrone DM5T6US Approved Estrone increases the expression of Spermine oxidase (SMOX). [16]
Mestranol DMG3F94 Approved Mestranol increases the expression of Spermine oxidase (SMOX). [16]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Spermine oxidase (SMOX). [20]
Tamibarotene DM3G74J Phase 3 Tamibarotene increases the expression of Spermine oxidase (SMOX). [3]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Spermine oxidase (SMOX). [8]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Spermine oxidase (SMOX). [21]
Tocopherol DMBIJZ6 Phase 2 Tocopherol increases the expression of Spermine oxidase (SMOX). [13]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Spermine oxidase (SMOX). [23]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Spermine oxidase (SMOX). [24]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 increases the expression of Spermine oxidase (SMOX). [4]
HEXESTROL DM9AGWQ Withdrawn from market HEXESTROL increases the expression of Spermine oxidase (SMOX). [16]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Spermine oxidase (SMOX). [25]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Spermine oxidase (SMOX). [26]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Spermine oxidase (SMOX). [27]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Spermine oxidase (SMOX). [28]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Spermine oxidase (SMOX). [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 36 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Differential modulation of PI3-kinase/Akt pathway during all-trans retinoic acid- and Am80-induced HL-60 cell differentiation revealed by DNA microarray analysis. Biochem Pharmacol. 2004 Dec 1;68(11):2177-86.
4 Gene expression changes associated with cytotoxicity identified using cDNA arrays. Funct Integr Genomics. 2000 Sep;1(2):114-26.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks. Mutagenesis. 2014 Jan;29(1):17-26.
8 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
9 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
10 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
11 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
12 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
13 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
14 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
15 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
16 Moving toward integrating gene expression profiling into high-throughput testing: a gene expression biomarker accurately predicts estrogen receptor alpha modulation in a microarray compendium. Toxicol Sci. 2016 May;151(1):88-103.
17 Identification of mechanisms of action of bisphenol a-induced human preadipocyte differentiation by transcriptional profiling. Obesity (Silver Spring). 2014 Nov;22(11):2333-43.
18 Mitochondrial Uncoupling Induces Epigenome Remodeling and Promotes Differentiation in Neuroblastoma. Cancer Res. 2023 Jan 18;83(2):181-194. doi: 10.1158/0008-5472.CAN-22-1029.
19 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
20 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
21 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
22 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
23 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
24 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
25 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
26 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
27 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
28 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
29 Acetaldehyde-induced cytotoxicity involves induction of spermine oxidase at the transcriptional level. Toxicology. 2013 Aug 9;310:1-7. doi: 10.1016/j.tox.2013.05.008. Epub 2013 May 23.