General Information of Drug Off-Target (DOT) (ID: OT3ERKQI)

DOT Name Protein S100-A16 (S100A16)
Synonyms Aging-associated gene 13 protein; Protein S100-F; S100 calcium-binding protein A16
Gene Name S100A16
Related Disease
Gastric cancer ( )
Glioma ( )
Lung adenocarcinoma ( )
Stomach cancer ( )
Advanced cancer ( )
Bladder cancer ( )
Cervical carcinoma ( )
Colorectal carcinoma ( )
Fatty liver disease ( )
Neoplasm ( )
Urinary bladder cancer ( )
Urinary bladder neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Obesity ( )
Small-cell lung cancer ( )
Squamous cell carcinoma ( )
Prostate cancer ( )
Prostate carcinoma ( )
Leukemia ( )
UniProt ID
S10AG_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2L50; 2L51; 3NXA
Pfam ID
PF01023
Sequence
MSDCYTELEKAVIVLVENFYKYVSKYSLVKNKISKSSFREMLQKELNHMLSDTGNRKAAD
KLIQNLDANHDGRISFDEYWTLIGGITGPIAKLIHEQEQQSSS
Function
Calcium-binding protein. Binds one calcium ion per monomer. Can promote differentiation of adipocytes (in vitro). Overexpression in preadipocytes increases their proliferation, enhances adipogenesis and reduces insulin-stimulated glucose uptake.
Tissue Specificity
Ubiquitous . Highly expressed in esophagus, adipose tissues and colon. Expressed at lower level in lung, brain, pancreas and skeletal muscle. Expression is up-regulated in tumors of bladder, lung, thyroid gland, pancreas and ovary . Expressed in astrocytes .

Molecular Interaction Atlas (MIA) of This DOT

20 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Gastric cancer DISXGOUK Definitive Biomarker [1]
Glioma DIS5RPEH Definitive Altered Expression [2]
Lung adenocarcinoma DISD51WR Definitive Altered Expression [3]
Stomach cancer DISKIJSX Definitive Biomarker [1]
Advanced cancer DISAT1Z9 Strong Altered Expression [4]
Bladder cancer DISUHNM0 Strong Biomarker [5]
Cervical carcinoma DIST4S00 Strong Biomarker [4]
Colorectal carcinoma DIS5PYL0 Strong Altered Expression [6]
Fatty liver disease DIS485QZ Strong Altered Expression [7]
Neoplasm DISZKGEW Strong Altered Expression [6]
Urinary bladder cancer DISDV4T7 Strong Biomarker [5]
Urinary bladder neoplasm DIS7HACE Strong Biomarker [5]
Breast cancer DIS7DPX1 moderate Genetic Variation [8]
Breast carcinoma DIS2UE88 moderate Genetic Variation [8]
Obesity DIS47Y1K moderate Altered Expression [9]
Small-cell lung cancer DISK3LZD moderate Altered Expression [10]
Squamous cell carcinoma DISQVIFL moderate Biomarker [6]
Prostate cancer DISF190Y Disputed Altered Expression [11]
Prostate carcinoma DISMJPLE Disputed Altered Expression [11]
Leukemia DISNAKFL Limited Biomarker [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 20 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Protein S100-A16 (S100A16). [13]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Protein S100-A16 (S100A16). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Protein S100-A16 (S100A16). [15]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Protein S100-A16 (S100A16). [16]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Protein S100-A16 (S100A16). [17]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Protein S100-A16 (S100A16). [18]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Protein S100-A16 (S100A16). [19]
Quercetin DM3NC4M Approved Quercetin increases the expression of Protein S100-A16 (S100A16). [20]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Protein S100-A16 (S100A16). [21]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Protein S100-A16 (S100A16). [22]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Protein S100-A16 (S100A16). [23]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Protein S100-A16 (S100A16). [25]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Protein S100-A16 (S100A16). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Protein S100-A16 (S100A16). [27]
chloropicrin DMSGBQA Investigative chloropicrin decreases the expression of Protein S100-A16 (S100A16). [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Protein S100-A16 (S100A16). [24]
------------------------------------------------------------------------------------

References

1 MicroRNA-6884-5p Regulates the Proliferation, Invasion, and EMT of Gastric Cancer Cells by Directly Targeting S100A16.Oncol Res. 2020 May 29;28(3):225-236. doi: 10.3727/096504019X15753718797664. Epub 2019 Dec 3.
2 Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells.Glia. 2009 Jul;57(9):1014-23. doi: 10.1002/glia.20825.
3 Prognostic significance of S100A16 subcellular localization in lung adenocarcinoma.Hum Pathol. 2018 Apr;74:148-155. doi: 10.1016/j.humpath.2018.01.001. Epub 2018 Jan 7.
4 S100A16 up-regulates Oct4 and Nanog expression in cancer stem-like cells of Yumoto human cervical carcinoma cells.Oncol Lett. 2018 Jun;15(6):9929-9933. doi: 10.3892/ol.2018.8568. Epub 2018 Apr 25.
5 S100A16 regulated by Snail promotes the chemoresistance of nonmuscle invasive bladder cancer through the AKT/Bcl-2 pathway.Cancer Manag Res. 2019 Mar 27;11:2449-2456. doi: 10.2147/CMAR.S196450. eCollection 2019.
6 S100A16 is a prognostic marker for colorectal cancer.J Surg Oncol. 2018 Feb;117(2):275-283. doi: 10.1002/jso.24822. Epub 2017 Sep 6.
7 S100A16, a novel lipogenesis promoting factor in livers of mice and hepatocytes in vitro.J Cell Physiol. 2019 Nov;234(11):21395-21406. doi: 10.1002/jcp.28748. Epub 2019 May 8.
8 Co-expression of S100A14 and S100A16 correlates with a poor prognosis in human breast cancer and promotes cancer cell invasion.BMC Cancer. 2015 Feb 13;15:53. doi: 10.1186/s12885-015-1059-6.
9 S100A16-induced adipogenesis is associated with up-regulation of 11 -hydroxysteroid dehydrogenase type 1 (11-HSD1).Biosci Rep. 2019 Sep 9;39(9):BSR20182042. doi: 10.1042/BSR20182042. Print 2019 Sep 30.
10 Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain.FASEB J. 2019 Feb;33(2):1742-1757. doi: 10.1096/fj.201800428R. Epub 2018 Sep 5.
11 S100A16 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer.Tumour Biol. 2016 Sep;37(9):12241-12250. doi: 10.1007/s13277-016-5096-9. Epub 2016 May 30.
12 S100A16 suppresses the growth and survival of leukaemia cellsand correlates with relapse and relapse free survival in adults with Philadelphia chromosome-negative B-cell acute lymphoblastic leukaemia.Br J Haematol. 2019 Jun;185(5):836-851. doi: 10.1111/bjh.15878. Epub 2019 Mar 27.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
15 Retinoic acid receptor alpha amplifications and retinoic acid sensitivity in breast cancers. Clin Breast Cancer. 2013 Oct;13(5):401-8.
16 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
17 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
18 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
19 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
20 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
21 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
22 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
23 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
26 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
27 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
28 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.