General Information of Drug Off-Target (DOT) (ID: OT4Q3LHV)

DOT Name Kinetochore scaffold 1 (KNL1)
Synonyms
ALL1-fused gene from chromosome 15q14 protein; AF15q14; Bub-linking kinetochore protein; Blinkin; Cancer susceptibility candidate gene 5 protein; Cancer/testis antigen 29; CT29; Kinetochore-null protein 1; Protein CASC5; Protein D40/AF15q14
Gene Name KNL1
Related Disease
Acute lymphocytic leukaemia ( )
Acute myelomonocytic leukemia M4 ( )
Advanced cancer ( )
Childhood acute lymphoblastic leukemia ( )
Colorectal carcinoma ( )
Familial prostate carcinoma ( )
Isolated congenital microcephaly ( )
Lung cancer ( )
Lung neoplasm ( )
Melanoma ( )
Microcephaly 4, primary, autosomal recessive ( )
Neoplasm ( )
Prostate cancer, hereditary, 1 ( )
Prostate carcinoma ( )
Sarcoidosis ( )
leukaemia ( )
Leukemia ( )
Autosomal recessive primary microcephaly ( )
Acute myelogenous leukaemia ( )
Gastric cancer ( )
Stomach cancer ( )
UniProt ID
KNL1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
3SI5; 4A1G; 4NF9; 4NFA
Pfam ID
PF18210 ; PF19221
Sequence
MDGVSSEANEENDNIERPVRRRHSSILKPPRSPLQDLRGGNERVQESNALRNKKNSRRVS
FADTIKVFQTESHMKIVRKSEMEGCSAMVPSQLQLLPPGFKRFSCLSLPETETGENLLLI
QNKKLEDNYCEITGMNTLLSAPIHTQMQQKEFSIIEHTRERKHANDQTVIFSDENQMDLT
SSHTVMITKGLLDNPISEKSTKIDTTSFLANLKLHTEDSRMKKEVNFSVDQNTSSENKID
FNDFIKRLKTGKCSAFPDVPDKENFEIPIYSKEPNSASSTHQMHVSLKEDENNSNITRLF
REKDDGMNFTQCHTANIQTLIPTSSETNSRESKGNDITIYGNDFMDLTFNHTLQILPATG
NFSEIENQTQNAMDVTTGYGTKASGNKTVFKSKQNTAFQDLSINSADKIHITRSHIMGAE
THIVSQTCNQDARILAMTPESIYSNPSIQGCKTVFYSSCNDAMEMTKCLSNMREEKNLLK
HDSNYAKMYCNPDAMSSLTEKTIYSGEENMDITKSHTVAIDNQIFKQDQSNVQIAAAPTP
EKEMMLQNLMTTSEDGKMNVNCNSVPHVSKERIQQSLSNPLSISLTDRKTELLSGENMDL
TESHTSNLGSQVPLAAYNLAPESTSESHSQSKSSSDECEEITKSRNEPFQRSDIIAKNSL
TDTWNKDKDWVLKILPYLDKDSPQSADCNQEIATSHNIVYCGGVLDKQITNRNTVSWEQS
LFSTTKPLFSSGQFSMKNHDTAISSHTVKSVLGQNSKLAEPLRKSLSNPTPDYCHDKMII
CSEEEQNMDLTKSHTVVIGFGPSELQELGKTNLEHTTGQLTTMNRQIAVKVEKCGKSPIE
KSGVLKSNCIMDVLEDESVQKPKFPKEKQNVKIWGRKSVGGPKIDKTIVFSEDDKNDMDI
TKSYTIEINHRPLLEKRDCHLVPLAGTSETILYTCRQDDMEITRSHTTALECKTVSPDEI
TTRPMDKTVVFVDNHVELEMTESHTVFIDYQEKERTDRPNFELSQRKSLGTPTVICTPTE
ESVFFPGNGESDRLVANDSQLTPLEEWSNNRGPVEVADNMELSKSATCKNIKDVQSPGFL
NEPLSSKSQRRKSLKLKNDKTIVFSENHKNDMDITQSCMVEIDNESALEDKEDFHLAGAS
KTILYSCGQDDMEITRSHTTALECKTLLPNEIAIRPMDKTVLFTDNYSDLEVTDSHTVFI
DCQATEKILEENPKFGIGKGKNLGVSFPKDNSCVQEIAEKQALAVGNKIVLHTEQKQQLF
AATNRTTNEIIKFHSAAMDEKVIGKVVDQACTLEKAQVESCQLNNRDRRNVDFTSSHATA
VCGSSDNYSCLPNVISCTDNLEGSAMLLCDKDEEKANYCPVQNDLAYANDFASEYYLESE
GQPLSAPCPLLEKEEVIQTSTKGQLDCVITLHKDQDLIKDPRNLLANQTLVYSQDLGEMT
KLNSKRVSFKLPKDQMKVYVDDIYVIPQPHFSTDQPPLPKKGQSSINKEEVILSKAGNKS
LNIIENSSAPICENKPKILNSEEWFAAACKKELKENIQTTNYNTALDFHSNSDVTKQVIQ
THVNAGEAPDPVITSNVPCFHSIKPNLNNLNGKTGEFLAFQTVHLPPLPEQLLELGNKAH
NDMHIVQATEIHNINIISSNAKDSRDEENKKSHNGAETTSLPPKTVFKDKVRRCSLGIFL
PRLPNKRNCSVTGIDDLEQIPADTTDINHLETQPVSSKDSGIGSVAGKLNLSPSQYINEE
NLPVYPDEINSSDSINIETEEKALIETYQKEISPYENKMGKTCNSQKRTWVQEEEDIHKE
KKIRKNEIKFSDTTQDREIFDHHTEEDIDKSANSVLIKNLSRTPSSCSSSLDSIKADGTS
LDFSTYRSSQMESQFLRDTICEESLREKLQDGRITIREFFILLQVHILIQKPRQSNLPGN
FTVNTPPTPEDLMLSQYVYRPKIQIYREDCEARRQKIEELKLSASNQDKLLVDINKNLWE
KMRHCSDKELKAFGIYLNKIKSCFTKMTKVFTHQGKVALYGKLVQSAQNEREKLQIKIDE
MDKILKKIDNCLTEMETETKNLEDEEKNNPVEEWDSEMRAAEKELEQLKTEEEELQRNLL
ELEVQKEQTLAQIDFMQKQRNRTEELLDQLSLSEWDVVEWSDDQAVFTFVYDTIQLTITF
EESVVGFPFLDKRYRKIVDVNFQSLLDEDQAPPSSLLVHKLIFQYVEEKESWKKTCTTQH
QLPKMLEEFSLVVHHCRLLGEEIEYLKRWGPNYNLMNIDINNNELRLLFSSSAAFAKFEI
TLFLSAYYPSVPLPSTIQNHVGNTSQDDIATILSKVPLENNYLKNVVKQIYQDLFQDCHF
YH
Function
Performs two crucial functions during mitosis: it is essential for spindle-assembly checkpoint signaling and for correct chromosome alignment. Required for attachment of the kinetochores to the spindle microtubules. Directly links BUB1 and BUB1B to kinetochores. Part of the MIS12 complex, which may be fundamental for kinetochore formation and proper chromosome segregation during mitosis. Acts in coordination with CENPK to recruit the NDC80 complex to the outer kinetochore.
Tissue Specificity
Highly expressed in testis, where it is localized in germ cells, in particular in spermatocytes and in the pre-acrosome of round spermatids. Detected in the acrosome of ejaculated spermatozoa. Detected in adult thymus, bone marrow, colon, small intestine, appendix and placenta, and in fetal liver and thymus.
KEGG Pathway
Cell cycle (hsa04110 )
Reactome Pathway
Separation of Sister Chromatids (R-HSA-2467813 )
Resolution of Sister Chromatid Cohesion (R-HSA-2500257 )
RHO GTPases Activate Formins (R-HSA-5663220 )
Deposition of new CENPA-containing nucleosomes at the centromere (R-HSA-606279 )
Mitotic Prometaphase (R-HSA-68877 )
EML4 and NUDC in mitotic spindle formation (R-HSA-9648025 )
Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal (R-HSA-141444 )

Molecular Interaction Atlas (MIA) of This DOT

21 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acute lymphocytic leukaemia DISPX75S Strong Biomarker [1]
Acute myelomonocytic leukemia M4 DISRRMV2 Strong Biomarker [1]
Advanced cancer DISAT1Z9 Strong Biomarker [2]
Childhood acute lymphoblastic leukemia DISJ5D6U Strong Biomarker [1]
Colorectal carcinoma DIS5PYL0 Strong Biomarker [3]
Familial prostate carcinoma DISL9KNO Strong Biomarker [4]
Isolated congenital microcephaly DISUXHZ6 Strong Genetic Variation [5]
Lung cancer DISCM4YA Strong Biomarker [6]
Lung neoplasm DISVARNB Strong Altered Expression [6]
Melanoma DIS1RRCY Strong Altered Expression [1]
Microcephaly 4, primary, autosomal recessive DIS4HVZ0 Strong Autosomal recessive [7]
Neoplasm DISZKGEW Strong Altered Expression [3]
Prostate cancer, hereditary, 1 DISE2P4L Strong Biomarker [4]
Prostate carcinoma DISMJPLE Strong Genetic Variation [4]
Sarcoidosis DISE5B8Z Strong Biomarker [8]
leukaemia DISS7D1V moderate Biomarker [9]
Leukemia DISNAKFL moderate Biomarker [9]
Autosomal recessive primary microcephaly DIS29IE3 Supportive Autosomal recessive [10]
Acute myelogenous leukaemia DISCSPTN Limited Genetic Variation [11]
Gastric cancer DISXGOUK Limited Altered Expression [12]
Stomach cancer DISKIJSX Limited Altered Expression [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Kinetochore scaffold 1 (KNL1). [13]
TAK-243 DM4GKV2 Phase 1 TAK-243 increases the sumoylation of Kinetochore scaffold 1 (KNL1). [27]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 affects the phosphorylation of Kinetochore scaffold 1 (KNL1). [29]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Kinetochore scaffold 1 (KNL1). [14]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Kinetochore scaffold 1 (KNL1). [15]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Kinetochore scaffold 1 (KNL1). [16]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Kinetochore scaffold 1 (KNL1). [17]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Kinetochore scaffold 1 (KNL1). [18]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Kinetochore scaffold 1 (KNL1). [19]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Kinetochore scaffold 1 (KNL1). [14]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Kinetochore scaffold 1 (KNL1). [20]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Kinetochore scaffold 1 (KNL1). [21]
Testosterone DM7HUNW Approved Testosterone decreases the expression of Kinetochore scaffold 1 (KNL1). [20]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Kinetochore scaffold 1 (KNL1). [22]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Kinetochore scaffold 1 (KNL1). [23]
Progesterone DMUY35B Approved Progesterone decreases the expression of Kinetochore scaffold 1 (KNL1). [24]
Lucanthone DMZLBUO Approved Lucanthone decreases the expression of Kinetochore scaffold 1 (KNL1). [25]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Kinetochore scaffold 1 (KNL1). [26]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Kinetochore scaffold 1 (KNL1). [28]
Geldanamycin DMS7TC5 Discontinued in Phase 2 Geldanamycin increases the expression of Kinetochore scaffold 1 (KNL1). [30]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Kinetochore scaffold 1 (KNL1). [31]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Kinetochore scaffold 1 (KNL1). [32]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Kinetochore scaffold 1 (KNL1). [33]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Kinetochore scaffold 1 (KNL1). [34]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Kinetochore scaffold 1 (KNL1). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Characterization of the MLL partner gene AF15q14 involved in t(11;15)(q23;q14).Oncogene. 2003 Mar 6;22(9):1418-24. doi: 10.1038/sj.onc.1206272.
2 Targeted Knockdown of the Kinetochore Protein D40/Knl-1 Inhibits Human Cancer in a p53 Status-Independent Manner.Sci Rep. 2015 Sep 8;5:13676. doi: 10.1038/srep13676.
3 Effect of KNL1 on the proliferation and apoptosis of colorectal cancer cells.Technol Cancer Res Treat. 2019 Jan 1;18:1533033819858668. doi: 10.1177/1533033819858668.
4 Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.Nat Genet. 2018 Jul;50(7):928-936. doi: 10.1038/s41588-018-0142-8. Epub 2018 Jun 11.
5 Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion.Nat Commun. 2019 Jun 13;10(1):2588. doi: 10.1038/s41467-019-10411-w.
6 Frequent expression of new cancer/testis gene D40/AF15q14 in lung cancers of smokers.Br J Cancer. 2002 Jun 5;86(11):1757-62. doi: 10.1038/sj.bjc.6600328.
7 Kinetochore KMN network gene CASC5 mutated in primary microcephaly. Hum Mol Genet. 2012 Dec 15;21(24):5306-17. doi: 10.1093/hmg/dds386. Epub 2012 Sep 13.
8 Whole exome sequencing in three families segregating a pediatric case of sarcoidosis.BMC Med Genomics. 2018 Mar 6;11(1):23. doi: 10.1186/s12920-018-0338-x.
9 D40/KNL1/CASC5 and autosomal recessive primary microcephaly.Congenit Anom (Kyoto). 2017 Nov;57(6):191-196. doi: 10.1111/cga.12252. Epub 2017 Nov 1.
10 Clinical Practice Guidelines for Rare Diseases: The Orphanet Database. PLoS One. 2017 Jan 18;12(1):e0170365. doi: 10.1371/journal.pone.0170365. eCollection 2017.
11 AF15q14, a novel partner gene fused to the MLL gene in an acute myeloid leukaemia with a t(11;15)(q23;q14).Oncogene. 2000 Sep 7;19(38):4446-50. doi: 10.1038/sj.onc.1203789.
12 Dysregulation of NCAPG, KNL1, miR-148a-3p, miR-193b-3p, and miR-1179 may contribute to the progression of gastric cancer.Biol Res. 2018 Nov 3;51(1):44. doi: 10.1186/s40659-018-0192-5.
13 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
14 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
15 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
16 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
17 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
18 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
19 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
20 Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer. 2011 May 18;10:58.
21 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
22 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
23 Methotrexate modulates folate phenotype and inflammatory profile in EA.hy 926 cells. Eur J Pharmacol. 2014 Jun 5;732:60-7.
24 Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod Sci. 2011 Aug;18(8):781-97.
25 Lucanthone is a novel inhibitor of autophagy that induces cathepsin D-mediated apoptosis. J Biol Chem. 2011 Feb 25;286(8):6602-13.
26 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
27 Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies. J Biol Chem. 2019 Oct 18;294(42):15218-15234. doi: 10.1074/jbc.RA119.009147. Epub 2019 Jul 8.
28 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
29 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
30 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
31 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
32 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
33 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
34 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.
35 Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics. 2006 Sep 29;7:246. doi: 10.1186/1471-2164-7-246.