General Information of Drug Off-Target (DOT) (ID: OT6Y1DPK)

DOT Name Keratin, type I cytoskeletal 17 (KRT17)
Synonyms 39.1; Cytokeratin-17; CK-17; Keratin-17; K17
Gene Name KRT17
Related Disease
Sebocystomatosis ( )
Pachyonychia congenita 2 ( )
Pachyonychia congenita ( )
UniProt ID
K1C17_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
Pfam ID
PF00038
Sequence
MTTSIRQFTSSSSIKGSSGLGGGSSRTSCRLSGGLGAGSCRLGSAGGLGSTLGGSSYSSC
YSFGSGGGYGSSFGGVDGLLAGGEKATMQNLNDRLASYLDKVRALEEANTELEVKIRDWY
QRQAPGPARDYSQYYRTIEELQNKILTATVDNANILLQIDNARLAADDFRTKFETEQALR
LSVEADINGLRRVLDELTLARADLEMQIENLKEELAYLKKNHEEEMNALRGQVGGEINVE
MDAAPGVDLSRILNEMRDQYEKMAEKNRKDAEDWFFSKTEELNREVATNSELVQSGKSEI
SELRRTMQALEIELQSQLSMKASLEGNLAETENRYCVQLSQIQGLIGSVEEQLAQLRCEM
EQQNQEYKILLDVKTRLEQEIATYRRLLEGEDAHLTQYKKEPVTTRQVRTIVEEVQDGKV
ISSREQVHQTTR
Function
Type I keratin involved in the formation and maintenance of various skin appendages, specifically in determining shape and orientation of hair. Required for the correct growth of hair follicles, in particular for the persistence of the anagen (growth) state. Modulates the function of TNF-alpha in the specific context of hair cycling. Regulates protein synthesis and epithelial cell growth through binding to the adapter protein SFN and by stimulating Akt/mTOR pathway. Involved in tissue repair. May be a marker of basal cell differentiation in complex epithelia and therefore indicative of a certain type of epithelial 'stem cells'. Acts as a promoter of epithelial proliferation by acting a regulator of immune response in skin: promotes Th1/Th17-dominated immune environment contributing to the development of basaloid skin tumors. May act as an autoantigen in the immunopathogenesis of psoriasis, with certain peptide regions being a major target for autoreactive T-cells and hence causing their proliferation.
Tissue Specificity
Expressed in the outer root sheath and medulla region of hair follicle specifically from eyebrow and beard, digital pulp, nail matrix and nail bed epithelium, mucosal stratified squamous epithelia and in basal cells of oral epithelium, palmoplantar epidermis and sweat and mammary glands. Also expressed in myoepithelium of prostate, basal layer of urinary bladder, cambial cells of sebaceous gland and in exocervix (at protein level).
KEGG Pathway
Estrogen sig.ling pathway (hsa04915 )
Staphylococcus aureus infection (hsa05150 )
Reactome Pathway
Formation of the cornified envelope (R-HSA-6809371 )
Keratinization (R-HSA-6805567 )

Molecular Interaction Atlas (MIA) of This DOT

3 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Sebocystomatosis DISS9YGD Definitive Autosomal dominant [1]
Pachyonychia congenita 2 DISN77SX Strong Autosomal dominant [2]
Pachyonychia congenita DISW8VPN Supportive Autosomal dominant [3]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Keratin, type I cytoskeletal 17 (KRT17). [4]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of Keratin, type I cytoskeletal 17 (KRT17). [24]
------------------------------------------------------------------------------------
30 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [5]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [8]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [9]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [10]
Triclosan DMZUR4N Approved Triclosan increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [11]
Selenium DM25CGV Approved Selenium increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [12]
Progesterone DMUY35B Approved Progesterone decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [13]
Fluorouracil DMUM7HZ Approved Fluorouracil affects the expression of Keratin, type I cytoskeletal 17 (KRT17). [14]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [6]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [15]
DTI-015 DMXZRW0 Approved DTI-015 decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [16]
Malathion DMXZ84M Approved Malathion increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [17]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [18]
Alitretinoin DMME8LH Approved Alitretinoin decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [6]
Bexarotene DMOBIKY Approved Bexarotene decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [19]
Calcipotriol DM03CP7 Approved Calcipotriol decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [10]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [20]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [21]
Genistein DM0JETC Phase 2/3 Genistein decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [15]
Amiodarone DMUTEX3 Phase 2/3 Trial Amiodarone increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [22]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [25]
SB-431542 DM0YOXQ Preclinical SB-431542 increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [15]
Formaldehyde DM7Q6M0 Investigative Formaldehyde increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [27]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [28]
Sulforaphane DMQY3L0 Investigative Sulforaphane decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [29]
Deguelin DMXT7WG Investigative Deguelin increases the expression of Keratin, type I cytoskeletal 17 (KRT17). [30]
all-trans-4-oxo-retinoic acid DMM2R1N Investigative all-trans-4-oxo-retinoic acid decreases the expression of Keratin, type I cytoskeletal 17 (KRT17). [6]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Keratin, type I cytoskeletal 17 (KRT17). [23]
------------------------------------------------------------------------------------

References

1 Missense mutations in keratin 17 cause either pachyonychia congenita type 2 or a phenotype resembling steatocystoma multiplex. J Invest Dermatol. 1997 Feb;108(2):220-3. doi: 10.1111/1523-1747.ep12335315.
2 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
3 Pachyonychia Congenita. 2006 Jan 27 [updated 2017 Nov 30]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
4 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
5 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
6 Retinoic acid and its 4-oxo metabolites are functionally active in human skin cells in vitro. J Invest Dermatol. 2005 Jul;125(1):143-53.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Low doses of cisplatin induce gene alterations, cell cycle arrest, and apoptosis in human promyelocytic leukemia cells. Biomark Insights. 2016 Aug 24;11:113-21.
9 Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res. 2012 Nov;22(11):2153-62.
10 Effects of 1 alpha,25-dihydroxy-vitamin D3 and calcipotriol on organotypic cultures of outer root sheath cells: a potential model to evaluate antipsoriatic drugs. Arch Dermatol Res. 1993;285(7):402-9. doi: 10.1007/BF00372133.
11 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
12 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
13 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
14 Multi-level gene expression profiles affected by thymidylate synthase and 5-fluorouracil in colon cancer. BMC Genomics. 2006 Apr 3;7:68. doi: 10.1186/1471-2164-7-68.
15 Gene expression profiling in Ishikawa cells: a fingerprint for estrogen active compounds. Toxicol Appl Pharmacol. 2009 Apr 1;236(1):85-96.
16 Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression. J Neurooncol. 2005 Jul;73(3):189-98.
17 Exposure to Insecticides Modifies Gene Expression and DNA Methylation in Hematopoietic Tissues In Vitro. Int J Mol Sci. 2023 Mar 26;24(7):6259. doi: 10.3390/ijms24076259.
18 Simvastatin inactivates beta1-integrin and extracellular signal-related kinase signaling and inhibits cell proliferation in head and neck squamous cell carcinoma cells. Cancer Sci. 2007 Jun;98(6):890-9.
19 Identification of biomarkers modulated by the rexinoid LGD1069 (bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res. 2006 Dec 15;66(24):12009-18.
20 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
21 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
22 Identification by automated screening of a small molecule that selectively eliminates neural stem cells derived from hESCs but not dopamine neurons. PLoS One. 2009 Sep 23;4(9):e7155.
23 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
26 Activin/nodal signaling switches the terminal fate of human embryonic stem cell-derived trophoblasts. J Biol Chem. 2015 Apr 3;290(14):8834-48.
27 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
28 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
29 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
30 Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol. 2021 Feb;95(2):591-615. doi: 10.1007/s00204-020-02970-5. Epub 2021 Jan 29.