General Information of Drug Off-Target (DOT) (ID: OT8NIWMQ)

DOT Name Amine oxidase A (MAOA)
Synonyms EC 1.4.3.21; EC 1.4.3.4; Monoamine oxidase type A; MAO-A
Gene Name MAOA
Related Disease
Brunner syndrome ( )
UniProt ID
AOFA_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2BXR; 2BXS; 2Z5X; 2Z5Y
EC Number
1.4.3.21; 1.4.3.4
Pfam ID
PF01593
Sequence
MENQEKASIAGHMFDVVVIGGGISGLSAAKLLTEYGVSVLVLEARDRVGGRTYTIRNEHV
DYVDVGGAYVGPTQNRILRLSKELGIETYKVNVSERLVQYVKGKTYPFRGAFPPVWNPIA
YLDYNNLWRTIDNMGKEIPTDAPWEAQHADKWDKMTMKELIDKICWTKTARRFAYLFVNI
NVTSEPHEVSALWFLWYVKQCGGTTRIFSVTNGGQERKFVGGSGQVSERIMDLLGDQVKL
NHPVTHVDQSSDNIIIETLNHEHYECKYVINAIPPTLTAKIHFRPELPAERNQLIQRLPM
GAVIKCMMYYKEAFWKKKDYCGCMIIEDEDAPISITLDDTKPDGSLPAIMGFILARKADR
LAKLHKEIRKKKICELYAKVLGSQEALHPVHYEEKNWCEEQYSGGCYTAYFPPGIMTQYG
RVIRQPVGRIFFAGTETATKWSGYMEGAVEAGERAAREVLNGLGKVTEKDIWVQEPESKD
VPAVEITHTFWERNLPSVSGLLKIIGFSTSVTALGFVLYKYKLLPRS
Function
Catalyzes the oxidative deamination of primary and some secondary amine such as neurotransmitters, with concomitant reduction of oxygen to hydrogen peroxide and has important functions in the metabolism of neuroactive and vasoactive amines in the central nervous system and peripheral tissues. Preferentially oxidizes serotonin. Also catalyzes the oxidative deamination of kynuramine to 3-(2-aminophenyl)-3-oxopropanal that can spontaneously condense to 4-hydroxyquinoline.
Tissue Specificity Heart, liver, duodenum, blood vessels and kidney.
KEGG Pathway
Glycine, serine and threonine metabolism (hsa00260 )
Arginine and proline metabolism (hsa00330 )
Histidine metabolism (hsa00340 )
Tyrosine metabolism (hsa00350 )
Phenylalanine metabolism (hsa00360 )
Tryptophan metabolism (hsa00380 )
Drug metabolism - cytochrome P450 (hsa00982 )
Metabolic pathways (hsa01100 )
Serotonergic sy.pse (hsa04726 )
Dopaminergic sy.pse (hsa04728 )
Parkinson disease (hsa05012 )
Cocaine addiction (hsa05030 )
Amphetamine addiction (hsa05031 )
Alcoholism (hsa05034 )
Reactome Pathway
Norepinephrine Neurotransmitter Release Cycle (R-HSA-181430 )
Enzymatic degradation of dopamine by COMT (R-HSA-379397 )
Enzymatic degradation of Dopamine by monoamine oxidase (R-HSA-379398 )
Dopamine clearance from the synaptic cleft (R-HSA-379401 )
Metabolism of serotonin (R-HSA-380612 )
Defective MAOA causes BRUNS (R-HSA-5579012 )
Interleukin-4 and Interleukin-13 signaling (R-HSA-6785807 )
Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB (R-HSA-141333 )
BioCyc Pathway
MetaCyc:HS01798-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Brunner syndrome DISGCLSK Definitive X-linked [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Biotransformations of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Dopamine DMPGUCF Approved Amine oxidase A (MAOA) decreases the amination of Dopamine. [46]
TRYPTAMINE DMAFPHB Phase 3 Amine oxidase A (MAOA) decreases the amination of TRYPTAMINE. [50]
------------------------------------------------------------------------------------
This DOT Affected the Regulation of Drug Effects of 5 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Norepinephrine DMOUC09 Approved Amine oxidase A (MAOA) increases the metabolism of Norepinephrine. [47]
Almogran DM7I64Z Approved Amine oxidase A (MAOA) increases the metabolism of Almogran. [49]
Serotonin DMOFCRY Investigative Amine oxidase A (MAOA) increases the abundance of Serotonin. [51]
Tyramine DM4UXT1 Investigative Amine oxidase A (MAOA) increases the metabolism of Tyramine. [47]
Metanephrine DMTGMB1 Investigative Amine oxidase A (MAOA) affects the abundance of Metanephrine. [52]
------------------------------------------------------------------------------------
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Risperidone DMN6DXL Approved Amine oxidase A (MAOA) increases the response to substance of Risperidone. [48]
------------------------------------------------------------------------------------
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Amine oxidase A (MAOA). [2]
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Amine oxidase A (MAOA). [10]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Amine oxidase A (MAOA). [37]
------------------------------------------------------------------------------------
53 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Amine oxidase A (MAOA). [3]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Amine oxidase A (MAOA). [4]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Amine oxidase A (MAOA). [5]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Amine oxidase A (MAOA). [6]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Amine oxidase A (MAOA). [7]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Amine oxidase A (MAOA). [8]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Amine oxidase A (MAOA). [9]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Amine oxidase A (MAOA). [11]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of Amine oxidase A (MAOA). [12]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Amine oxidase A (MAOA). [13]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Amine oxidase A (MAOA). [14]
Carbamazepine DMZOLBI Approved Carbamazepine increases the expression of Amine oxidase A (MAOA). [15]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Amine oxidase A (MAOA). [16]
Decitabine DMQL8XJ Approved Decitabine affects the expression of Amine oxidase A (MAOA). [17]
Progesterone DMUY35B Approved Progesterone increases the expression of Amine oxidase A (MAOA). [18]
Dexamethasone DMMWZET Approved Dexamethasone increases the expression of Amine oxidase A (MAOA). [19]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Amine oxidase A (MAOA). [20]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol increases the expression of Amine oxidase A (MAOA). [21]
Rosiglitazone DMILWZR Approved Rosiglitazone decreases the activity of Amine oxidase A (MAOA). [22]
Ethanol DMDRQZU Approved Ethanol decreases the activity of Amine oxidase A (MAOA). [23]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Amine oxidase A (MAOA). [24]
Amphotericin B DMTAJQE Approved Amphotericin B decreases the expression of Amine oxidase A (MAOA). [25]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Amine oxidase A (MAOA). [26]
Clorgyline DMCEUJD Approved Clorgyline decreases the activity of Amine oxidase A (MAOA). [27]
Hydrocortisone DMGEMB7 Approved Hydrocortisone increases the expression of Amine oxidase A (MAOA). [28]
Selegiline DM6034S Approved Selegiline decreases the activity of Amine oxidase A (MAOA). [29]
Benzyl benzoate DMDPYI5 Approved Benzyl benzoate decreases the activity of Amine oxidase A (MAOA). [30]
Yohimbine DMJCP1Y Approved Yohimbine decreases the activity of Amine oxidase A (MAOA). [31]
Linezolid DMGFPU2 Approved Linezolid decreases the activity of Amine oxidase A (MAOA). [32]
Moclobemide DMNZWL7 Approved Moclobemide decreases the activity of Amine oxidase A (MAOA). [27]
Isoflavone DM7U58J Phase 4 Isoflavone decreases the expression of Amine oxidase A (MAOA). [33]
3,4-Dihydroxycinnamic Acid DMVZL26 Phase 4 3,4-Dihydroxycinnamic Acid decreases the activity of Amine oxidase A (MAOA). [30]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Amine oxidase A (MAOA). [34]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Amine oxidase A (MAOA). [35]
Fucoxanthin DMPQFTA Phase 2 Fucoxanthin decreases the activity of Amine oxidase A (MAOA). [29]
CX157 DMS2WB5 Phase 2 CX157 decreases the activity of Amine oxidase A (MAOA). [36]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Amine oxidase A (MAOA). [38]
Arecoline DMFJZK3 Phase 1 Arecoline decreases the expression of Amine oxidase A (MAOA). [39]
Flavonoid derivative 1 DMCQP0B Patented Flavonoid derivative 1 decreases the activity of Amine oxidase A (MAOA). [40]
Harmine DMPA5WD Patented Harmine decreases the activity of Amine oxidase A (MAOA). [31]
Benzylcinnamate DMD7Z3H Patented Benzylcinnamate decreases the activity of Amine oxidase A (MAOA). [30]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Amine oxidase A (MAOA). [41]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Amine oxidase A (MAOA). [35]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Amine oxidase A (MAOA). [42]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of Amine oxidase A (MAOA). [43]
Aminohippuric acid DMUN54G Investigative Aminohippuric acid affects the expression of Amine oxidase A (MAOA). [44]
Rutin DMEHRAJ Investigative Rutin decreases the expression of Amine oxidase A (MAOA). [45]
Chlorogenic acid DM2Y3P4 Investigative Chlorogenic acid decreases the activity of Amine oxidase A (MAOA). [30]
Flavone DMEQH6J Investigative Flavone decreases the activity of Amine oxidase A (MAOA). [40]
Methylenedioxymethamphetamine DMYVU47 Investigative Methylenedioxymethamphetamine decreases the activity of Amine oxidase A (MAOA). [46]
ROSMARINIC ACID DMQ6SJT Investigative ROSMARINIC ACID decreases the activity of Amine oxidase A (MAOA). [30]
Flavanone DMNWIYM Investigative Flavanone decreases the activity of Amine oxidase A (MAOA). [40]
NORHARMANE DMKYQWG Investigative NORHARMANE decreases the activity of Amine oxidase A (MAOA). [23]
------------------------------------------------------------------------------------
⏷ Show the Full List of 53 Drug(s)

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
5 Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes. Toxicol Appl Pharmacol. 2011 May 15;253(1):57-69.
6 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
7 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
8 Nephrotoxicity induced by cisplatin is primarily due to the activation of the 5-hydroxytryptamine degradation system in proximal renal tubules. Chem Biol Interact. 2021 Nov 1;349:109662. doi: 10.1016/j.cbi.2021.109662. Epub 2021 Sep 21.
9 Persistent and non-persistent changes in gene expression result from long-term estrogen exposure of MCF-7 breast cancer cells. J Steroid Biochem Mol Biol. 2011 Feb;123(3-5):140-50.
10 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
11 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
12 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
13 Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005 Jul 1;106(1):304-10.
14 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
15 Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin Pharmacol Ther. 2006 Nov;80(5):440-456.
16 Functional gene expression profile underlying methotrexate-induced senescence in human colon cancer cells. Tumour Biol. 2011 Oct;32(5):965-76.
17 Acute hypersensitivity of pluripotent testicular cancer-derived embryonal carcinoma to low-dose 5-aza deoxycytidine is associated with global DNA Damage-associated p53 activation, anti-pluripotency and DNA demethylation. PLoS One. 2012;7(12):e53003. doi: 10.1371/journal.pone.0053003. Epub 2012 Dec 27.
18 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
19 SGK1, a potential regulator of c-fms related breast cancer aggressiveness. Clin Exp Metastasis. 2004;21(6):477-83.
20 Effects of ciglitazone and troglitazone on the proliferation of human stomach cancer cells. World J Gastroenterol. 2009 Jan 21;15(3):310-20.
21 Assaying estrogenicity by quantitating the expression levels of endogenous estrogen-regulated genes. Environ Health Perspect. 2000 May;108(5):403-12.
22 Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Anti-Diabetes Drugs. ACS Med Chem Lett. 2011 Oct 15;3(1):39-42.
23 Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors? Neurotoxicology. 2017 Mar;59:22-26.
24 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
25 Differential expression of microRNAs and their predicted targets in renal cells exposed to amphotericin B and its complex with copper (II) ions. Toxicol Mech Methods. 2017 Sep;27(7):537-543. doi: 10.1080/15376516.2017.1333554. Epub 2017 Jun 8.
26 Comparative gene expression analysis of a chronic myelogenous leukemia cell line resistant to cyclophosphamide using oligonucleotide arrays and response to tyrosine kinase inhibitors. Leuk Res. 2007 Nov;31(11):1511-20.
27 Synthesis and study of a series of 3-arylcoumarins as potent and selective monoamine oxidase B inhibitors. J Med Chem. 2011 Oct 27;54(20):7127-37.
28 Ultradian cortisol pulsatility encodes a distinct, biologically important signal. PLoS One. 2011 Jan 18;6(1):e15766.
29 Characterizing fucoxanthin as a selective dopamine D(3)/D(4) receptor agonist: Relevance to Parkinson's disease. Chem Biol Interact. 2019 Sep 1;310:108757. doi: 10.1016/j.cbi.2019.108757. Epub 2019 Jul 16.
30 Combining initro and in silico approaches to evaluate the multifunctional profile of rosmarinic acid from Blechnum brasiliense on targets related to neurodegeneration. Chem Biol Interact. 2016 Jul 25;254:135-45.
31 In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks. Toxicol Lett. 2017 Apr 15;272:84-93.
32 Nonclinical Evaluation of Antibacterial Oxazolidinones Contezolid and Contezolid Acefosamil with Low Serotonergic Neurotoxicity. Chem Res Toxicol. 2021 May 17;34(5):1348-1354. doi: 10.1021/acs.chemrestox.0c00524. Epub 2021 Apr 29.
33 Soy isoflavones exert differential effects on androgen responsive genes in LNCaP human prostate cancer cells. J Nutr. 2007 Apr;137(4):964-72.
34 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
35 Oestrogenic potencies of Zeranol, oestradiol, diethylstilboestrol, Bisphenol-A and genistein: implications for exposure assessment of potential endocrine disrupters. Hum Reprod. 2001 May;16(5):1037-45.
36 Novel reversible monoamine oxidase A inhibitors: highly potent and selective 3-(1H-pyrrol-3-yl)-2-oxazolidinones. J Med Chem. 2011 Dec 8;54(23):8228-32.
37 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
38 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
39 Characterization of arecoline-induced effects on cytotoxicity in normal human gingival fibroblasts by global gene expression profiling. Toxicol Sci. 2007 Nov;100(1):66-74.
40 Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria. J Agric Food Chem. 2012 Oct 17;60(41):10270-7.
41 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
42 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
43 Molecular targets of chloropicrin in human airway epithelial cells. Toxicol In Vitro. 2017 Aug;42:247-254.
44 Identification of molecular signatures predicting the carcinogenicity of polycyclic aromatic hydrocarbons (PAHs). Toxicol Lett. 2012 Jul 7;212(1):18-28. doi: 10.1016/j.toxlet.2012.04.013. Epub 2012 May 1.
45 Combination of metabolomics and network pharmacology analysis to decipher the mechanisms of total flavonoids of Litchi seed against prostate cancer. J Pharm Pharmacol. 2023 Jul 5;75(7):951-968. doi: 10.1093/jpp/rgad035.
46 Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine. Toxicol Lett. 2016 Jan 22;243:48-55.
47 Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat. Hum Genet. 1999 Dec;105(6):542-51. doi: 10.1007/s004399900183.
48 Different impacts of aquaporin 4 and MAOA allele variation among olanzapine, risperidone, and paliperidone in schizophrenia. J Clin Psychopharmacol. 2012 Jun;32(3):394-7. doi: 10.1097/JCP.0b013e31825370f4.
49 Identification of the human liver enzymes involved in the metabolism of the antimigraine agent almotriptan. Drug Metab Dispos. 2003 Apr;31(4):404-11.
50 Evidence for new light-independent pathways for generation of the endogenous aryl hydrocarbon receptor agonist FICZ. Chem Res Toxicol. 2016 Jan 19;29(1):75-86.
51 Hyperserotonemia in autism: the potential role of 5HT-related gene variants. Coll Antropol. 2008 Jan;32 Suppl 1:75-80.
52 Monoamine oxidase A down-regulation contributes to high metanephrine concentration in pheochromocytoma. J Clin Endocrinol Metab. 2012 Aug;97(8):2773-81. doi: 10.1210/jc.2012-1557. Epub 2012 May 8.