General Information of Drug Off-Target (DOT) (ID: OT8UWRA3)

DOT Name CST complex subunit STN1 (STN1)
Synonyms Oligonucleotide/oligosaccharide-binding fold-containing protein 1; Suppressor of cdc thirteen homolog
Gene Name STN1
Related Disease
Neoplasm ( )
Breast cancer ( )
Breast carcinoma ( )
Cardiovascular disease ( )
Central nervous system neoplasm ( )
Cerebral palsy ( )
Cerebroretinal microangiopathy with calcifications and cysts 2 ( )
Chronic obstructive pulmonary disease ( )
Coronary heart disease ( )
Depression ( )
Dyskeratosis congenita ( )
Endometriosis ( )
Epithelial ovarian cancer ( )
Glioma ( )
High blood pressure ( )
Isolated cleft palate ( )
Laryngeal carcinoma ( )
Lung cancer ( )
Lung neoplasm ( )
Matthew-Wood syndrome ( )
Melanoma ( )
Systemic sclerosis ( )
Tuberculosis ( )
Uterine fibroids ( )
Cutaneous melanoma ( )
Coats plus syndrome ( )
Basal cell carcinoma ( )
Basal cell neoplasm ( )
Colorectal carcinoma ( )
Coronary atherosclerosis ( )
Hereditary nonpolyposis colon cancer ( )
Non-insulin dependent diabetes ( )
Small lymphocytic lymphoma ( )
UniProt ID
STN1_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
4JOI; 4JQF; 6W6W; 7U5C; 8D0B; 8D0K; 8SOJ; 8SOK
Pfam ID
PF09170 ; PF01336
Sequence
MQPGSSRCEEETPSLLWGLDPVFLAFAKLYIRDILDMKESRQVPGVFLYNGHPIKQVDVL
GTVIGVRERDAFYSYGVDDSTGVINCICWKKLNTESVSAAPSAARELSLTSQLKKLQETI
EQKTKIEIGDTIRVRGSIRTYREEREIHATTYYKVDDPVWNIQIARMLELPTIYRKVYDQ
PFHSSALEKEEALSNPGALDLPSLTSLLSEKAKEFLMENRVQSFYQQELEMVESLLSLAN
QPVIHSASSDQVNFKKDTTSKAIHSIFKNAIQLLQEKGLVFQKDDGFDNLYYVTREDKDL
HRKIHRIIQQDCQKPNHMEKGCHFLHILACARLSIRPGLSEAVLQQVLELLEDQSDIVST
MEHYYTAF
Function
Component of the CST complex proposed to act as a specialized replication factor promoting DNA replication under conditions of replication stress or natural replication barriers such as the telomere duplex. The CST complex binds single-stranded DNA with high affinity in a sequence-independent manner, while isolated subunits bind DNA with low affinity by themselves. Initially the CST complex has been proposed to protect telomeres from DNA degradation. However, the CST complex has been shown to be involved in several aspects of telomere replication. The CST complex inhibits telomerase and is involved in telomere length homeostasis; it is proposed to bind to newly telomerase-synthesized 3' overhangs and to terminate telomerase action implicating the association with the ACD:POT1 complex thus interfering with its telomerase stimulation activity. The CST complex is also proposed to be involved in fill-in synthesis of the telomeric C-strand probably implicating recruitment and activation of DNA polymerase alpha. The CST complex facilitates recovery from many forms of exogenous DNA damage; seems to be involved in the re-initiation of DNA replication at repaired forks and/or dormant origins. Required for efficicient replication of the duplex region of the telomere. Promotes efficient replication of lagging-strand telomeres. Promotes general replication start following replication-fork stalling implicating new origin firing. May be in involved in C-strand fill-in during late S/G2 phase independent of its role in telomere duplex replication ; Component of the CST complex, a complex that binds to single-stranded DNA and is required to protect telomeres from DNA degradation. The CST complex binds single-stranded DNA with high affinity in a sequence-independent manner, while isolated subunits bind DNA with low affinity by themselves. In addition to telomere protection, the CST complex has probably a more general role in DNA metabolism at non-telomeric sites.
Reactome Pathway
Telomere C-strand synthesis initiation (R-HSA-174430 )
Polymerase switching on the C-strand of the telomere (R-HSA-174411 )

Molecular Interaction Atlas (MIA) of This DOT

33 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Neoplasm DISZKGEW Definitive Biomarker [1]
Breast cancer DIS7DPX1 Strong Genetic Variation [2]
Breast carcinoma DIS2UE88 Strong Genetic Variation [2]
Cardiovascular disease DIS2IQDX Strong Biomarker [3]
Central nervous system neoplasm DISFC18W Strong Genetic Variation [4]
Cerebral palsy DIS82ODL Strong Genetic Variation [5]
Cerebroretinal microangiopathy with calcifications and cysts 2 DISZWLL2 Strong Autosomal recessive [6]
Chronic obstructive pulmonary disease DISQCIRF Strong Genetic Variation [7]
Coronary heart disease DIS5OIP1 Strong Genetic Variation [8]
Depression DIS3XJ69 Strong Biomarker [9]
Dyskeratosis congenita DISSXV0K Strong Biomarker [10]
Endometriosis DISX1AG8 Strong Genetic Variation [2]
Epithelial ovarian cancer DIS56MH2 Strong Biomarker [11]
Glioma DIS5RPEH Strong Genetic Variation [4]
High blood pressure DISY2OHH Strong Genetic Variation [12]
Isolated cleft palate DISV80CD Strong Genetic Variation [5]
Laryngeal carcinoma DISNHCIV Strong Biomarker [13]
Lung cancer DISCM4YA Strong Biomarker [14]
Lung neoplasm DISVARNB Strong Biomarker [14]
Matthew-Wood syndrome DISA7HR7 Strong Genetic Variation [15]
Melanoma DIS1RRCY Strong Genetic Variation [16]
Systemic sclerosis DISF44L6 Strong Genetic Variation [17]
Tuberculosis DIS2YIMD Strong Genetic Variation [18]
Uterine fibroids DISBZRMJ Strong Genetic Variation [19]
Cutaneous melanoma DIS3MMH9 moderate Genetic Variation [20]
Coats plus syndrome DIS11ELA Supportive Autosomal recessive [21]
Basal cell carcinoma DIS7PYN3 Limited Genetic Variation [22]
Basal cell neoplasm DIS37IXW Limited Genetic Variation [22]
Colorectal carcinoma DIS5PYL0 Limited Biomarker [23]
Coronary atherosclerosis DISKNDYU Limited Genetic Variation [24]
Hereditary nonpolyposis colon cancer DISPA49R Limited Biomarker [23]
Non-insulin dependent diabetes DISK1O5Z Limited Genetic Variation [24]
Small lymphocytic lymphoma DIS30POX Limited Biomarker [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of CST complex subunit STN1 (STN1). [26]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of CST complex subunit STN1 (STN1). [35]
------------------------------------------------------------------------------------
9 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of CST complex subunit STN1 (STN1). [27]
Tretinoin DM49DUI Approved Tretinoin increases the expression of CST complex subunit STN1 (STN1). [28]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of CST complex subunit STN1 (STN1). [29]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of CST complex subunit STN1 (STN1). [30]
Estradiol DMUNTE3 Approved Estradiol affects the expression of CST complex subunit STN1 (STN1). [31]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of CST complex subunit STN1 (STN1). [32]
Quercetin DM3NC4M Approved Quercetin increases the expression of CST complex subunit STN1 (STN1). [33]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of CST complex subunit STN1 (STN1). [34]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of CST complex subunit STN1 (STN1). [36]
------------------------------------------------------------------------------------
⏷ Show the Full List of 9 Drug(s)

References

1 A DNA polymerase-{alpha}{middle dot}primase cofactor with homology to replication protein A-32 regulates DNA replication in mammalian cells.J Biol Chem. 2009 Feb 27;284(9):5807-18. doi: 10.1074/jbc.M807593200. Epub 2008 Dec 31.
2 Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits.Nat Commun. 2018 Sep 7;9(1):3636. doi: 10.1038/s41467-018-05428-6.
3 Telomere-associated polymorphisms correlate with cardiovascular disease mortality in Caucasian women: the Cardiovascular Health Study.Mech Ageing Dev. 2012 May;133(5):275-81. doi: 10.1016/j.mad.2012.03.002. Epub 2012 Mar 16.
4 Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors.Nat Genet. 2017 May;49(5):789-794. doi: 10.1038/ng.3823. Epub 2017 Mar 27.
5 Structural Analysis and Conformational Dynamics of STN1 Gene Mutations Involved in Coat Plus Syndrome.Front Mol Biosci. 2019 Jun 12;6:41. doi: 10.3389/fmolb.2019.00041. eCollection 2019.
6 Mutations in STN1 cause Coats plus syndrome and are associated with genomic and telomere defects. J Exp Med. 2016 Jul 25;213(8):1429-40. doi: 10.1084/jem.20151618. Epub 2016 Jul 18.
7 Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations.Nat Genet. 2019 Mar;51(3):494-505. doi: 10.1038/s41588-018-0342-2. Epub 2019 Feb 25.
8 Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.Circ Res. 2018 Feb 2;122(3):433-443. doi: 10.1161/CIRCRESAHA.117.312086. Epub 2017 Dec 6.
9 Telomere length and depression: prospective cohort study and Mendelian randomisation study in 67 306 individuals.Br J Psychiatry. 2017 Jan;210(1):31-38. doi: 10.1192/bjp.bp.115.178798. Epub 2016 Nov 3.
10 Germline Genetic Predisposition to Hematologic Malignancy.J Clin Oncol. 2017 Mar 20;35(9):1018-1028. doi: 10.1200/JCO.2016.70.8644. Epub 2017 Feb 13.
11 Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.Nat Genet. 2017 May;49(5):680-691. doi: 10.1038/ng.3826. Epub 2017 Mar 27.
12 Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension.Nat Genet. 2016 Oct;48(10):1151-1161. doi: 10.1038/ng.3654. Epub 2016 Sep 12.
13 Association of SNPs in the OBFC1 gene and laryngeal carcinoma in Chinese Han male population.Int J Clin Oncol. 2019 Sep;24(9):1042-1048. doi: 10.1007/s10147-019-01442-w. Epub 2019 Apr 23.
14 Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.Nat Genet. 2017 Jul;49(7):1126-1132. doi: 10.1038/ng.3892. Epub 2017 Jun 12.
15 Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study.Int J Cancer. 2019 Mar 15;144(6):1275-1283. doi: 10.1002/ijc.31928. Epub 2018 Nov 12.
16 Novel pleiotropic risk loci for melanoma and nevus density implicate multiple biological pathways.Nat Commun. 2018 Nov 14;9(1):4774. doi: 10.1038/s41467-018-06649-5.
17 Genetic susceptibility loci of idiopathic interstitial pneumonia do not represent risk for systemic sclerosis: a case control study in Caucasian patients.Arthritis Res Ther. 2016 Jan 20;18:20. doi: 10.1186/s13075-016-0923-3.
18 Association between common telomere length genetic variants and telomere length in an African population and impacts of HIV and TB.J Hum Genet. 2019 Oct;64(10):1033-1040. doi: 10.1038/s10038-019-0646-9. Epub 2019 Aug 6.
19 Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis.Nat Commun. 2019 Oct 24;10(1):4857. doi: 10.1038/s41467-019-12536-4.
20 Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma.Nat Genet. 2015 Sep;47(9):987-995. doi: 10.1038/ng.3373. Epub 2015 Aug 3.
21 ARL6IP6, a susceptibility locus for ischemic stroke, is mutated in a patient with syndromic Cutis Marmorata Telangiectatica Congenita. Hum Genet. 2015 Aug;134(8):815-22. doi: 10.1007/s00439-015-1561-6. Epub 2015 May 10.
22 Combined analysis of keratinocyte cancers identifies novel genome-wide loci.Hum Mol Genet. 2019 Sep 15;28(18):3148-3160. doi: 10.1093/hmg/ddz121.
23 Detection of Tn, sialosyl-Tn and T antigens in hereditary nonpolyposis colorectal cancer.Virchows Arch. 1996 Dec;429(6):345-52. doi: 10.1007/BF00198438.
24 Association of TERC and OBFC1 haplotypes with mean leukocyte telomere length and risk for coronary heart disease.PLoS One. 2013 Dec 12;8(12):e83122. doi: 10.1371/journal.pone.0083122. eCollection 2013.
25 Genetic Variation Associated with Longer Telomere Length Increases Risk of Chronic Lymphocytic Leukemia.Cancer Epidemiol Biomarkers Prev. 2016 Jul;25(7):1043-9. doi: 10.1158/1055-9965.EPI-15-1329. Epub 2016 May 13.
26 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
27 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
28 Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One. 2013 May 28;8(5):e63862.
29 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
30 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
31 Identification of novel low-dose bisphenol a targets in human foreskin fibroblast cells derived from hypospadias patients. PLoS One. 2012;7(5):e36711. doi: 10.1371/journal.pone.0036711. Epub 2012 May 4.
32 Arsenic exposure, telomere length, and expression of telomere-related genes among Bangladeshi individuals. Environ Res. 2015 Jan;136:462-9. doi: 10.1016/j.envres.2014.09.040. Epub 2014 Nov 25.
33 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
34 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
35 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
36 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.