General Information of Disease (ID: DISNHCIV)

Disease Name Laryngeal carcinoma
Synonyms laryngeal throat cancer; laryngeal cancer; cancer of the larynx; cancer of larynx; larynx carcinoma; laryngeal carcinoma; carcinoma of the larynx; carcinoma of larynx
Definition
Carcinoma that arises from the laryngeal epithelium. More than 90% of laryngeal carcinomas are squamous cell carcinomas. The remainder are adenoid cystic carcinomas, mucoepidermoid carcinomas and carcinomas with neuroendocrine differentiation.
Disease Hierarchy
:
DISH9F1N: Carcinoma
DISNHCIV: Laryngeal carcinoma
Disease Identifiers
MONDO ID
MONDO_0002358
UMLS CUI
C0595989
MedGen ID
108889
HPO ID
HP:0012118
SNOMED CT ID
276975007

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 17 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ADAMTS5 TTXSU2Y moderate Biomarker [1]
ARRB1 TTMVD4A moderate Altered Expression [2]
EPHA7 TTAHTVG moderate Biomarker [3]
PLOD2 TT8MEUD moderate Biomarker [4]
PRLR TTBPXMA moderate Altered Expression [5]
TOP2B TT4NVEM moderate Biomarker [6]
COL7A1 TTBCOKN Strong Biomarker [7]
CSNK2A2 TT7GR5W Strong Altered Expression [8]
HSP90AB1 TTH5YN2 Strong Biomarker [9]
IL12RB2 TT4SWR8 Strong Altered Expression [10]
MAP4K4 TT6NI13 Strong Biomarker [11]
MLH1 TTISG27 Strong Biomarker [12]
MSH2 TTCAWRT Strong Altered Expression [12]
MTNR1A TT0WAIE Strong Biomarker [13]
NR1H2 TTXA6PH Strong Genetic Variation [14]
S100A4 TTPR5SX Strong Biomarker [15]
TACSTD2 TTP2HE5 Strong Altered Expression [16]
------------------------------------------------------------------------------------
⏷ Show the Full List of 17 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC22A23 DTMJK12 moderate Biomarker [17]
------------------------------------------------------------------------------------
This Disease Is Related to 7 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
CYP1A1 DE6OQ3W Limited Genetic Variation [18]
EPHX1 DELB4KP moderate Genetic Variation [19]
ADH5 DEIOH6A Strong Genetic Variation [20]
AKR1A1 DED2FW3 Strong Biomarker [21]
MT2A DEFKGT7 Strong Genetic Variation [22]
PARK7 DEPOVCH Strong Biomarker [23]
UGT1A7 DEZO4N3 Strong Genetic Variation [24]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DME(s)
This Disease Is Related to 65 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
ERCC5 OTQAKFJM Limited Genetic Variation [25]
HADH OTJDOL20 Limited Genetic Variation [26]
NBN OT73B5MD Limited Genetic Variation [27]
PAG1 OTFOJUIQ Limited Biomarker [28]
CHAF1A OTXSSY4H moderate Genetic Variation [29]
CHAF1B OTOMK4KH moderate Genetic Variation [29]
CNOT7 OTJBKCPI moderate Genetic Variation [29]
CNOT8 OT6CMCS0 moderate Genetic Variation [29]
GSTM3 OTLA2WJT moderate Genetic Variation [30]
LAD1 OT6YGTVX moderate Biomarker [31]
TOPBP1 OT6UPZPD moderate Genetic Variation [6]
AK6 OT84OHHP Strong Altered Expression [32]
ALG1 OTVXPA9E Strong Biomarker [13]
ANKRD36B OT3MW415 Strong Altered Expression [33]
APAF1 OTJWIVY0 Strong Altered Expression [34]
ATG10 OTVRPC5X Strong Genetic Variation [35]
BTG2 OTZF6K1H Strong Biomarker [36]
CAPN10 OTS9LJW4 Strong Biomarker [37]
CBY1 OTAKMUS2 Strong Biomarker [38]
CCN4 OT69BER9 Strong Altered Expression [39]
CELF1 OT6JQ5RS Strong Biomarker [40]
CLDN7 OTNE0XHQ Strong Biomarker [41]
CNDP2 OTJR9436 Strong Biomarker [42]
CSTA OT1K68KE Strong Biomarker [43]
CTTN OTJRG4ES Strong Genetic Variation [44]
DCAF12 OT24XM7T Strong Biomarker [45]
ECM1 OT1K65VW Strong Altered Expression [46]
ELMO3 OTQHO9VM Strong Biomarker [47]
EMP1 OTSZHUHQ Strong Altered Expression [48]
ENTPD5 OTFH05B9 Strong Biomarker [49]
FOXN3 OTOJYJZP Strong Biomarker [50]
FOXP4 OTHCGIEZ Strong Altered Expression [51]
FUNDC1 OTA6IVKQ Strong Biomarker [52]
GGNBP2 OT7K9YZV Strong Altered Expression [53]
HOXC6 OTBCRAZV Strong Biomarker [54]
INPP4B OTLROA7G Strong Altered Expression [55]
INTS2 OT2N5TCK Strong Biomarker [56]
KLF5 OT1ABI9N Strong Biomarker [57]
KLHDC7B OT2H5BNX Strong Biomarker [58]
KLK11 OT5PKX7Y Strong Biomarker [59]
LARP6 OTUQ9QS9 Strong Genetic Variation [60]
LIMS1 OT729S0T Strong Altered Expression [61]
MEOX2 OTKZCJCB Strong Altered Expression [62]
MLIP OTMT7AII Strong Altered Expression [32]
MT1B OTUA4FFH Strong Biomarker [13]
MT1E OTXJKU4Y Strong Biomarker [13]
MT1F OTZVUYG1 Strong Biomarker [13]
MT1G OTAV1OCR Strong Biomarker [13]
MT1H OT0MVBM6 Strong Biomarker [13]
MT1M OTVT8PLU Strong Biomarker [13]
MT1X OT9AKFVS Strong Biomarker [13]
NUTM1 OTONYC08 Strong Biomarker [63]
OGT OT1Z1ZXE Strong Altered Expression [64]
PRPH2 OTNH2G5H Strong Altered Expression [65]
PTOV1 OT94WT5X Strong Biomarker [66]
RAD23B OT0PGOG3 Strong Genetic Variation [67]
RAN OT2TER5M Strong Genetic Variation [68]
RECQL OTPCH3JH Strong Genetic Variation [69]
RECQL5 OTVZMP1Q Strong Genetic Variation [69]
S100A2 OTTGHJ1H Strong Biomarker [70]
SH3GL2 OTOE443G Strong Altered Expression [71]
SNRPD1 OTWKZV4E Strong Biomarker [72]
STN1 OT8UWRA3 Strong Biomarker [73]
TARBP2 OT1QQ8H3 Strong Genetic Variation [68]
TREX2 OT5QAGJ4 Strong Posttranslational Modification [74]
------------------------------------------------------------------------------------
⏷ Show the Full List of 65 DOT(s)

References

1 Expression and distribution of aggrecanases in human larynx: ADAMTS-5/aggrecanase-2 is the main aggrecanase in laryngeal carcinoma.Biochimie. 2013 Apr;95(4):725-34. doi: 10.1016/j.biochi.2012.10.022. Epub 2012 Nov 3.
2 -Arrestin-1 expression and epithelial-to-mesenchymal transition in laryngeal carcinoma.Int J Biol Markers. 2019 Mar;34(1):33-40. doi: 10.1177/1724600818813621. Epub 2019 Mar 10.
3 Effect of EphA7 Silencing on Proliferation, Invasion and Apoptosis in Human Laryngeal Cancer Cell Lines Hep-2 and AMC-HN-8.Cell Physiol Biochem. 2015;36(2):435-45. doi: 10.1159/000430110. Epub 2015 May 11.
4 PLOD2 contributes to drug resistance in laryngeal cancer by promoting cancer stem cell-like characteristics.BMC Cancer. 2019 Aug 27;19(1):840. doi: 10.1186/s12885-019-6029-y.
5 Sex-related hormone receptor in laryngeal squamous cell carcinoma: correlation with androgen estrogen- and prolactin receptor expression and influence of prognosis.Acta Otolaryngol. 2018 Jan;138(1):66-72. doi: 10.1080/00016489.2017.1373851. Epub 2017 Sep 11.
6 The c.*229C?T gene polymorphism in 3'UTR region of the topoisomerase II binding protein 1 gene and LOH in BRCA1/2 regions and their effect on the risk and progression of human laryngeal carcinoma.Tumour Biol. 2016 Apr;37(4):4541-57. doi: 10.1007/s13277-015-4276-3. Epub 2015 Oct 27.
7 Identification of novel enriched recurrent chimeric COL7A1-UCN2 in human laryngeal cancer samples using deep sequencing.BMC Cancer. 2018 Mar 2;18(1):248. doi: 10.1186/s12885-018-4161-8.
8 RNA interference (RNAi) mediated stable knockdown of protein casein kinase 2-alpha (CK2) inhibits migration and invasion and enhances cisplatin-induced apoptosis in HEp-2 laryngeal carcinoma cells.Acta Histochem. 2014 Jul;116(6):1000-6. doi: 10.1016/j.acthis.2014.04.001. Epub 2014 May 13.
9 Bcl-2 overexpression contributes to laryngeal carcinoma cell survival by forming a complex with Hsp90.Oncol Rep. 2017 Feb;37(2):849-856. doi: 10.3892/or.2016.5295. Epub 2016 Dec 7.
10 Combined Effect of IL-12R2 and IL-23R Expression on Prognosis of Patients with Laryngeal Cancer.Cell Physiol Biochem. 2018;50(3):1041-1054. doi: 10.1159/000494515. Epub 2018 Oct 24.
11 Silencing SOX2 Expression by RNA Interference Inhibits Proliferation, Invasion and Metastasis, and Induces Apoptosis through MAP4K4/JNK Signaling Pathway in Human Laryngeal Cancer TU212 Cells.J Histochem Cytochem. 2015 Sep;63(9):721-33. doi: 10.1369/0022155415590829. Epub 2015 May 22.
12 Reduced expression of mutS homolog 2 and mutL homolog 1 affects overall survival in laryngeal squamous cell carcinoma patients: Investigation into a potential cause.Oncol Rep. 2013 Sep;30(3):1371-9. doi: 10.3892/or.2013.2559. Epub 2013 Jun 20.
13 Potential biomarkers for head and neck squamous cell carcinoma.Laryngoscope. 2003 Mar;113(3):393-400. doi: 10.1097/00005537-200303000-00001.
14 Association of NER pathway gene polymorphisms with susceptibility to laryngeal cancer in a Chinese population.Int J Clin Exp Pathol. 2015 Sep 1;8(9):11615-21. eCollection 2015.
15 S100A4 promotes squamous cell laryngeal cancer Hep-2 cell invasion via NF-kB/MMP-9 signal.Eur Rev Med Pharmacol Sci. 2014;18(9):1361-7.
16 Trop2 inhibition suppresses the proliferation and invasion of laryngeal carcinoma cells via the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway.Mol Med Rep. 2015 Jul;12(1):865-70. doi: 10.3892/mmr.2015.3485. Epub 2015 Mar 13.
17 Investigation of the SLC22A23 gene in laryngeal squamous cell carcinoma.BMC Cancer. 2018 Apr 27;18(1):477. doi: 10.1186/s12885-018-4381-y.
18 CYP1A1 rs1048943 and rs4646903 polymorphisms associated with laryngeal cancer susceptibility among Asian populations: a meta-analysis.J Cell Mol Med. 2016 Feb;20(2):287-93. doi: 10.1111/jcmm.12720. Epub 2015 Nov 18.
19 Microsomal epoxide hydrolase genotypes and the risk for head and neck cancer.Head Neck. 2008 Jul;30(7):836-44. doi: 10.1002/hed.20781.
20 Laryngeal and oropharyngeal cancer, and alcohol dehydrogenase 3 and glutathione S-transferase M1 polymorphisms.Hum Genet. 1997 Mar;99(3):319-25. doi: 10.1007/s004390050365.
21 Increased aldehyde reductase expression mediates acquired radioresistance of laryngeal cancer cells via modulating p53.Cancer Biol Ther. 2012 Jun;13(8):638-46. doi: 10.4161/cbt.20081. Epub 2012 Jun 1.
22 Genetic polymorphism of metallothionein 2A and risk of laryngeal cancer in a Polish population.Med Oncol. 2014 Jul;31(7):75. doi: 10.1007/s12032-014-0075-8. Epub 2014 Jun 22.
23 Growth inhibitory effects of DJ-1-small interfering RNA on laryngeal carcinoma Hep-2 cells.Med Oncol. 2011 Jun;28(2):601-7. doi: 10.1007/s12032-010-9474-7. Epub 2010 Mar 19.
24 Genetic polymorphisms in the tobacco smoke carcinogens detoxifying enzyme UGT1A7 and the risk of head and neck cancer.Head Neck. 2009 Oct;31(10):1274-81. doi: 10.1002/hed.21090.
25 Association of single nucleotide polymorphisms of nucleotide excision repair genes with laryngeal cancer risk and interaction with cigarette smoking and alcohol drinking.Tumour Biol. 2014 May;35(5):4659-65. doi: 10.1007/s13277-014-1610-0. Epub 2014 Feb 22.
26 Genome-scale identification of microRNA-related SNPs associated with risk of head and neck squamous cell carcinoma.Carcinogenesis. 2017 Oct 1;38(10):986-993. doi: 10.1093/carcin/bgx056.
27 NBS1 rs2735383 polymorphism is associated with an increased risk of laryngeal carcinoma.BMC Cancer. 2018 Feb 12;18(1):175. doi: 10.1186/s12885-018-4078-2.
28 Identification of Integrin 1 as a Novel PAG1-Interacting Protein Involved in the Inherent Radioresistance of Human Laryngeal Carcinoma.J Cancer. 2018 Oct 18;9(22):4128-4138. doi: 10.7150/jca.26885. eCollection 2018.
29 Overexpression of chromatin assembly factor-1/p60 predicts biological behaviour of laryngeal carcinomas.Acta Otorhinolaryngol Ital. 2017 Feb;37(1):17-24. doi: 10.14639/0392-100X-867.
30 GSTM3 A/B polymorphism and risk for head and neck cancer: a meta-analysis.PLoS One. 2014 Jan 8;9(1):e83851. doi: 10.1371/journal.pone.0083851. eCollection 2014.
31 Basement membrane protein ladinin-1 and the MIF-CD44-1 integrin signaling axis are implicated in laryngeal cancer metastasis.Biochim Biophys Acta. 2016 Oct;1862(10):1938-54. doi: 10.1016/j.bbadis.2016.07.014. Epub 2016 Jul 25.
32 Clinical relevance of expression of the CIP/KIP cell-cycle inhibitors p21 and p27 in laryngeal cancer.J Clin Oncol. 1999 Oct;17(10):3150-9. doi: 10.1200/JCO.1999.17.10.3150.
33 Expression and prognostic value of MAGE-A9 in laryngeal squamous cell carcinoma.Int J Clin Exp Pathol. 2014 Sep 15;7(10):6734-42. eCollection 2014.
34 LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR-23a/APAF-1 axis.J Cell Mol Med. 2019 Oct;23(10):6708-6719. doi: 10.1111/jcmm.14549. Epub 2019 Jul 21.
35 Analysis of autophagy gene polymorphisms in Spanish patients with head and neck squamous cell carcinoma.Sci Rep. 2017 Jul 31;7(1):6887. doi: 10.1038/s41598-017-07270-0.
36 Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma.Cell Res. 2009 Jul;19(7):828-37. doi: 10.1038/cr.2009.72.
37 Calpain 10 gene and laryngeal cancer: a survival analysis.Head Neck. 2011 Jan;33(1):72-6. doi: 10.1002/hed.21404.
38 Downregulated Chibby in laryngeal squamous cell carcinoma with increased expression in laryngeal carcinoma Hep-2 cells.Oncol Rep. 2014 Nov;32(5):1947-56. doi: 10.3892/or.2014.3451. Epub 2014 Aug 29.
39 Wnt1-inducible signaling protein 1 regulates laryngeal squamous cell carcinoma glycolysis and chemoresistance via the YAP1/TEAD1/GLUT1 pathway.J Cell Physiol. 2019 Sep;234(9):15941-15950. doi: 10.1002/jcp.28253. Epub 2019 Feb 25.
40 Knockdown of CUG-binding protein 1 induces apoptosis of human laryngeal cancer cells.Cell Biol Int. 2014 Dec;38(12):1408-14. doi: 10.1002/cbin.10356. Epub 2014 Aug 19.
41 Identification of claudin?, ?, ? and ? as prognostic markers in human laryngeal carcinoma.Mol Med Rep. 2019 Jul;20(1):393-400. doi: 10.3892/mmr.2019.10265. Epub 2019 May 22.
42 Quantitative proteomics approach to screening of potential diagnostic and therapeutic targets for laryngeal carcinoma.PLoS One. 2014 Feb 27;9(2):e90181. doi: 10.1371/journal.pone.0090181. eCollection 2014.
43 Expression and clinical significance of cathepsin B and stefin A in laryngeal cancer.Oncol Rep. 2011 Oct;26(4):869-75. doi: 10.3892/or.2011.1344. Epub 2011 Jun 9.
44 Immunohistochemical Expression of Cortactin and Focal Adhesion Kinase Predicts Recurrence Risk and Laryngeal Cancer Risk Beyond Histologic Grading.Cancer Epidemiol Biomarkers Prev. 2018 Jul;27(7):805-813. doi: 10.1158/1055-9965.EPI-17-1082. Epub 2018 Apr 13.
45 Novel centrosome protein, TCC52, is a cancer-testis antigen.Cancer Sci. 2008 Nov;99(11):2274-9. doi: 10.1111/j.1349-7006.2008.00937.x. Epub 2008 Oct 14.
46 Correlation of ECM1 expression level with the pathogenesis and metastasis of laryngeal carcinoma.Int J Clin Exp Pathol. 2013 May 15;6(6):1132-7. Print 2013.
47 ELMO3 predicts poor outcome in T1 laryngeal cancer.Clin Otolaryngol. 2017 Dec;42(6):1181-1186. doi: 10.1111/coa.12845. Epub 2017 Mar 13.
48 The expression and function of epithelial membrane protein 1 in laryngeal carcinoma.Int J Oncol. 2017 Jan;50(1):141-148. doi: 10.3892/ijo.2016.3782. Epub 2016 Nov 28.
49 Gradual deregulation and loss of PCPH expression in the progression of human laryngeal neoplasia.Mol Carcinog. 2002 Dec;35(4):186-95. doi: 10.1002/mc.10091.
50 Metal-proteinase ADAM12, kinesin 14 and checkpoint suppressor 1 as new molecular markers of laryngeal carcinoma.Eur Arch Otorhinolaryngol. 2009 Oct;266(10):1501-7. doi: 10.1007/s00405-009-1019-3. Epub 2009 Jul 16.
51 FoxP4, a novel forkhead transcription factor.Biochim Biophys Acta. 2003 Jun 19;1627(2-3):147-52. doi: 10.1016/s0167-4781(03)00074-5.
52 Hydrogen peroxide-induced mitophagy contributes to laryngeal cancer cells survival via the upregulation of FUNDC1.Clin Transl Oncol. 2019 May;21(5):596-606. doi: 10.1007/s12094-018-1958-5. Epub 2018 Oct 3.
53 Molecular cloning and characterization of LCRG1 a novel gene localized to the tumor suppressor locus D17S800-D17S930.Cancer Lett. 2004 Jun 8;209(1):75-85. doi: 10.1016/j.canlet.2003.11.034.
54 Upregulation of microRNA-141 suppresses epithelial-mesenchymal transition and lymph node metastasis in laryngeal cancer through HOXC6-dependent TGF- signaling pathway.Cell Signal. 2020 Feb;66:109444. doi: 10.1016/j.cellsig.2019.109444. Epub 2019 Oct 16.
55 INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells.Biochem Biophys Res Commun. 2013 Oct 11;440(1):137-42. doi: 10.1016/j.bbrc.2013.09.041. Epub 2013 Sep 17.
56 Amplification of int-2 and bcl-1 genes in squamous cell carcinoma of the larynx.Acta Otolaryngol. 1998 Sep;118(5):763-8. doi: 10.1080/00016489850183331.
57 KLF5 silence attenuates proliferation and epithelial-mesenchymal transition induction in Hep-2 cells through NF-B signaling pathway.Eur Rev Med Pharmacol Sci. 2019 May;23(9):3867-3875. doi: 10.26355/eurrev_201905_17814.
58 Five genes as a novel signature for predicting the prognosis of patients with laryngeal cancer.J Cell Biochem. 2020 Aug;121(8-9):3804-3813. doi: 10.1002/jcb.29535. Epub 2019 Oct 31.
59 Diagnostic and prognostic significance of human kallikrein 11 (KLK11) mRNA expression levels in patients with laryngeal cancer.Clin Biochem. 2012 Jun;45(9):623-30. doi: 10.1016/j.clinbiochem.2012.03.005. Epub 2012 Mar 11.
60 The distribution and expression profiles of human Aspartyl/Asparaginyl beta-hydroxylase in tumor cell lines and human tissues.Oncol Rep. 2010 Nov;24(5):1257-64. doi: 10.3892/or_00000980.
61 High PINCH1 Expression in Human Laryngeal Carcinoma Associates with Poor Prognosis.Anal Cell Pathol (Amst). 2018 Mar 20;2018:2989635. doi: 10.1155/2018/2989635. eCollection 2018.
62 Over-expression of MEOX2 promotes apoptosis through inhibiting the PI3K/Akt pathway in laryngeal cancer cells.Neoplasma. 2018 Sep 19;65(5):745-752. doi: 10.4149/neo_2018_171218N824. Epub 2018 Jun 18.
63 Nuclear protein in testis midline carcinoma of larynx: An underdiagnosed entity.Head Neck. 2016 Aug;38(8):E2471-4. doi: 10.1002/hed.24418. Epub 2016 Mar 29.
64 Gene and protein expression of O-GlcNAc-cycling enzymes in human laryngeal cancer.Clin Exp Med. 2015 Nov;15(4):455-68. doi: 10.1007/s10238-014-0318-1. Epub 2014 Oct 15.
65 PRPH2 Activates Hippo Signalling and Suppresses the Invasion and Anoikis Inhibition of Laryngeal Cancer.Cancer Manag Res. 2019 Dec 2;11:10107-10115. doi: 10.2147/CMAR.S222527. eCollection 2019.
66 Autophagy inhibition as a promising therapeutic target for laryngeal cancer.Carcinogenesis. 2019 Dec 31;40(12):1525-1534. doi: 10.1093/carcin/bgz080.
67 Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC5, ERCC6 and RAD23B but not by polymorphisms in five other nucleotide excision repair genes.Int J Cancer. 2009 Sep 15;125(6):1431-9. doi: 10.1002/ijc.24442.
68 Association of Polymorphic Variants of miRNA Processing Genes with Larynx Cancer Risk in a Polish Population.Biomed Res Int. 2015;2015:298378. doi: 10.1155/2015/298378. Epub 2015 Nov 25.
69 Haplotype analysis of RECQL5 gene and laryngeal cancer.Tumour Biol. 2014 Mar;35(3):2669-73. doi: 10.1007/s13277-013-1351-5. Epub 2013 Nov 9.
70 iTRAQ-based quantitative proteomic analysis on S100 calcium binding protein A2 in metastasis of laryngeal cancer.PLoS One. 2015 Apr 13;10(4):e0122322. doi: 10.1371/journal.pone.0122322. eCollection 2015.
71 Study of the SH3-domain GRB2-like 2 gene expression in laryngeal carcinoma.Chin Med J (Engl). 2007 Mar 5;120(5):385-8.
72 Expression, localization and clinical application of exogenous Smith proteins D1 in gene transfected HEp-2 cells.Int J Rheum Dis. 2013 Jun;16(3):303-9. doi: 10.1111/1756-185X.12000. Epub 2012 Oct 22.
73 Association of SNPs in the OBFC1 gene and laryngeal carcinoma in Chinese Han male population.Int J Clin Oncol. 2019 Sep;24(9):1042-1048. doi: 10.1007/s10147-019-01442-w. Epub 2019 Apr 23.
74 DNA methylation at an enhancer of the three prime repair exonuclease 2 gene (TREX2) is linked to gene expression and survival in laryngeal cancer.Clin Epigenetics. 2019 May 3;11(1):67. doi: 10.1186/s13148-019-0666-5.