General Information of Drug Off-Target (DOT) (ID: OTDAF6U3)

DOT Name Very long chain fatty acid elongase 2 (ELOVL2)
Synonyms
EC 2.3.1.199; 3-keto acyl-CoA synthase ELOVL2; ELOVL fatty acid elongase 2; ELOVL FA elongase 2; Elongation of very long chain fatty acids protein 2; Very long chain 3-ketoacyl-CoA synthase 2; Very long chain 3-oxoacyl-CoA synthase 2
Gene Name ELOVL2
Related Disease
Chronic kidney disease ( )
Chronic renal failure ( )
Thyroid gland papillary carcinoma ( )
Acute coronary syndrome ( )
Adult glioblastoma ( )
Autism spectrum disorder ( )
Glioblastoma multiforme ( )
Glioma ( )
Hepatocellular carcinoma ( )
Male infertility ( )
Melanoma ( )
Non-alcoholic fatty liver disease ( )
Coronary heart disease ( )
UniProt ID
ELOV2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
EC Number
2.3.1.199
Pfam ID
PF01151
Sequence
MEHLKAFDDEINAFLDNMFGPRDSRVRGWFMLDSYLPTFFLTVMYLLSIWLGNKYMKNRP
ALSLRGILTLYNLGITLLSAYMLAELILSTWEGGYNLQCQDLTSAGEADIRVAKVLWWYY
FSKSVEFLDTIFFVLRKKTSQITFLHVYHHASMFNIWWCVLNWIPCGQSFFGPTLNSFIH
ILMYSYYGLSVFPSMHKYLWWKKYLTQAQLVQFVLTITHTMSAVVKPCGFPFGCLIFQSS
YMLTLVILFLNFYVQTYRKKPMKKDMQEPPAGKEVKNGFSKAYFTAANGVMNKKAQ
Function
Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that catalyzes the synthesis of polyunsaturated very long chain fatty acid (C20- and C22-PUFA), acting specifically toward polyunsaturated acyl-CoA with the higher activity toward C20:4(n-6) acyl-CoA. May participate in the production of polyunsaturated VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators.
Tissue Specificity Liver and testis.
KEGG Pathway
Fatty acid elongation (hsa00062 )
Biosynthesis of unsaturated fatty acids (hsa01040 )
Metabolic pathways (hsa01100 )
Fatty acid metabolism (hsa01212 )
Reactome Pathway
alpha-linolenic acid (ALA) metabolism (R-HSA-2046106 )
Synthesis of very long-chain fatty acyl-CoAs (R-HSA-75876 )
Linoleic acid (LA) metabolism (R-HSA-2046105 )
BioCyc Pathway
MetaCyc:ENSG00000096256-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

13 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Chronic kidney disease DISW82R7 Definitive Genetic Variation [1]
Chronic renal failure DISGG7K6 Definitive Genetic Variation [1]
Thyroid gland papillary carcinoma DIS48YMM Definitive Biomarker [2]
Acute coronary syndrome DIS7DYEW Strong Biomarker [3]
Adult glioblastoma DISVP4LU Strong Biomarker [4]
Autism spectrum disorder DISXK8NV Strong Genetic Variation [5]
Glioblastoma multiforme DISK8246 Strong Biomarker [4]
Glioma DIS5RPEH Strong Altered Expression [4]
Hepatocellular carcinoma DIS0J828 Strong Altered Expression [6]
Male infertility DISY3YZZ Strong Biomarker [7]
Melanoma DIS1RRCY Strong Genetic Variation [8]
Non-alcoholic fatty liver disease DISDG1NL Strong Genetic Variation [9]
Coronary heart disease DIS5OIP1 Limited Genetic Variation [10]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Cyclophosphamide DM4O2Z7 Approved Very long chain fatty acid elongase 2 (ELOVL2) affects the response to substance of Cyclophosphamide. [31]
------------------------------------------------------------------------------------
2 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of Very long chain fatty acid elongase 2 (ELOVL2). [11]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Very long chain fatty acid elongase 2 (ELOVL2). [24]
------------------------------------------------------------------------------------
22 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [12]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [13]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [14]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [15]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [16]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [17]
Vorinostat DMWMPD4 Approved Vorinostat increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [18]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Very long chain fatty acid elongase 2 (ELOVL2). [19]
Panobinostat DM58WKG Approved Panobinostat decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [20]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Very long chain fatty acid elongase 2 (ELOVL2). [19]
Obeticholic acid DM3Q1SM Approved Obeticholic acid increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [21]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [22]
Dihydrotestosterone DM3S8XC Phase 4 Dihydrotestosterone increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [23]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [18]
Belinostat DM6OC53 Phase 2 Belinostat decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [20]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [25]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [26]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [27]
Trichostatin A DM9C8NX Investigative Trichostatin A decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [28]
Coumestrol DM40TBU Investigative Coumestrol increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [16]
methyl p-hydroxybenzoate DMO58UW Investigative methyl p-hydroxybenzoate decreases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [29]
Butanoic acid DMTAJP7 Investigative Butanoic acid increases the expression of Very long chain fatty acid elongase 2 (ELOVL2). [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 22 Drug(s)

References

1 Genome-Wide Association Studies of Metabolites in Patients with CKD Identify Multiple Loci and Illuminate Tubular Transport Mechanisms.J Am Soc Nephrol. 2018 May;29(5):1513-1524. doi: 10.1681/ASN.2017101099. Epub 2018 Mar 15.
2 Prediction of the Prognosis Based on Chromosomal Instability-Related DNA Methylation Patterns of ELOVL2 and UBAC2 in PTCs.Mol Ther Nucleic Acids. 2019 Dec 6;18:650-660. doi: 10.1016/j.omtn.2019.09.027. Epub 2019 Oct 7.
3 A case-control study between gene polymorphisms of polyunsaturated fatty acid metabolic rate-limiting enzymes and acute coronary syndrome in Chinese Han population.Biomed Res Int. 2013;2013:928178. doi: 10.1155/2013/928178. Epub 2013 Feb 28.
4 Epigenetic Control of Fatty-Acid Metabolism Sustains Glioma Stem Cells.Cancer Discov. 2019 Sep;9(9):1161-1163. doi: 10.1158/2159-8290.CD-19-0733.
5 FADS1-FADS2 and ELOVL2 gene polymorphisms in susceptibility to autism spectrum disorders in Chinese children.BMC Psychiatry. 2018 Sep 4;18(1):283. doi: 10.1186/s12888-018-1868-7.
6 Molecular prognostic profile of Egyptian HCC cases infected with hepatitis C virus.Asian Pac J Cancer Prev. 2012;13(11):5433-8. doi: 10.7314/apjcp.2012.13.11.5433.
7 ELOVL2 controls the level of n-6 28:5 and 30:5 fatty acids in testis, a prerequisite for male fertility and sperm maturation in mice.J Lipid Res. 2011 Feb;52(2):245-55. doi: 10.1194/jlr.M011346. Epub 2010 Nov 24.
8 Genetic variants in ELOVL2 and HSD17B12 predict melanoma-specific survival.Int J Cancer. 2019 Nov 15;145(10):2619-2628. doi: 10.1002/ijc.32194. Epub 2019 Feb 20.
9 Contribution of a genetic risk score to clinical prediction of hepatic steatosis in obese children and adolescents.Dig Liver Dis. 2019 Nov;51(11):1586-1592. doi: 10.1016/j.dld.2019.05.029. Epub 2019 Jun 27.
10 A case-control study between the gene polymorphisms of polyunsaturated fatty acids metabolic rate-limiting enzymes and coronary artery disease in a Chinese Han population.Prostaglandins Leukot Essent Fatty Acids. 2011 Dec;85(6):329-33. doi: 10.1016/j.plefa.2011.08.007. Epub 2011 Sep 13.
11 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
12 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
13 Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012 Mar 15;259(3):270-80.
14 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
15 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
16 Pleiotropic combinatorial transcriptomes of human breast cancer cells exposed to mixtures of dietary phytoestrogens. Food Chem Toxicol. 2009 Apr;47(4):787-95.
17 Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Arch Toxicol. 2016 Jan;90(1):159-80.
18 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
19 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
20 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
21 Pharmacotoxicology of clinically-relevant concentrations of obeticholic acid in an organotypic human hepatocyte system. Toxicol In Vitro. 2017 Mar;39:93-103.
22 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
23 LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc Natl Acad Sci U S A. 2018 May 1;115(18):E4179-E4188.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma. Oncotarget. 2014 May 15;5(9):2355-71.
26 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
27 Bisphenol A Exposure Changes the Transcriptomic and Proteomic Dynamics of Human Retinoblastoma Y79 Cells. Genes (Basel). 2021 Feb 11;12(2):264. doi: 10.3390/genes12020264.
28 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
29 Transcriptome dynamics of alternative splicing events revealed early phase of apoptosis induced by methylparaben in H1299 human lung carcinoma cells. Arch Toxicol. 2020 Jan;94(1):127-140. doi: 10.1007/s00204-019-02629-w. Epub 2019 Nov 20.
30 MS4A3-HSP27 target pathway reveals potential for haematopoietic disorder treatment in alimentary toxic aleukia. Cell Biol Toxicol. 2023 Feb;39(1):201-216. doi: 10.1007/s10565-021-09639-4. Epub 2021 Sep 28.
31 Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006 Apr 1;118(7):1699-712. doi: 10.1002/ijc.21570.