General Information of Drug Off-Target (DOT) (ID: OTGO5P4R)

DOT Name Toll-like receptor 2 (TLR2)
Synonyms Toll/interleukin-1 receptor-like protein 4; CD antigen CD282
Gene Name TLR2
UniProt ID
TLR2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1FYW; 1FYX; 1O77; 2Z7X; 2Z80; 6NIG; 8AR0
Pfam ID
PF00560 ; PF13855 ; PF01463 ; PF01582
Sequence
MPHTLWMVWVLGVIISLSKEESSNQASLSCDRNGICKGSSGSLNSIPSGLTEAVKSLDLS
NNRITYISNSDLQRCVNLQALVLTSNGINTIEEDSFSSLGSLEHLDLSYNYLSNLSSSWF
KPLSSLTFLNLLGNPYKTLGETSLFSHLTKLQILRVGNMDTFTKIQRKDFAGLTFLEELE
IDASDLQSYEPKSLKSIQNVSHLILHMKQHILLLEIFVDVTSSVECLELRDTDLDTFHFS
ELSTGETNSLIKKFTFRNVKITDESLFQVMKLLNQISGLLELEFDDCTLNGVGNFRASDN
DRVIDPGKVETLTIRRLHIPRFYLFYDLSTLYSLTERVKRITVENSKVFLVPCLLSQHLK
SLEYLDLSENLMVEEYLKNSACEDAWPSLQTLILRQNHLASLEKTGETLLTLKNLTNIDI
SKNSFHSMPETCQWPEKMKYLNLSSTRIHSVTGCIPKTLEILDVSNNNLNLFSLNLPQLK
ELYISRNKLMTLPDASLLPMLLVLKISRNAITTFSKEQLDSFHTLKTLEAGGNNFICSCE
FLSFTQEQQALAKVLIDWPANYLCDSPSHVRGQQVQDVRLSVSECHRTALVSGMCCALFL
LILLTGVLCHRFHGLWYMKMMWAWLQAKRKPRKAPSRNICYDAFVSYSERDAYWVENLMV
QELENFNPPFKLCLHKRDFIPGKWIIDNIIDSIEKSHKTVFVLSENFVKSEWCKYELDFS
HFRLFDENNDAAILILLEPIEKKAIPQRFCKLRKIMNTKTYLEWPMDEAQREGFWVNLRA
AIKS
Function
Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins and other microbial cell wall components. Cooperates with TLR1 or TLR6 to mediate the innate immune response to bacterial lipoproteins or lipopeptides. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. May also activate immune cells and promote apoptosis in response to the lipid moiety of lipoproteins. Recognizes mycoplasmal macrophage-activating lipopeptide-2kD (MALP-2), soluble tuberculosis factor (STF), phenol-soluble modulin (PSM) and B.burgdorferi outer surface protein A lipoprotein (OspA-L) cooperatively with TLR6. Stimulation of monocytes in vitro with M.tuberculosis PstS1 induces p38 MAPK and ERK1/2 activation primarily via this receptor, but also partially via TLR4. MAPK activation in response to bacterial peptidoglycan also occurs via this receptor. Acts as a receptor for M.tuberculosis lipoproteins LprA, LprG, LpqH and PstS1, some lipoproteins are dependent on other coreceptors (TLR1, CD14 and/or CD36); the lipoproteins act as agonists to modulate antigen presenting cell functions in response to the pathogen. M.tuberculosis HSP70 (dnaK) but not HSP65 (groEL-2) acts via this protein to stimulate NF-kappa-B expression. Recognizes M.tuberculosis major T-antigen EsxA (ESAT-6) which inhibits downstream MYD88-dependent signaling (shown in mouse). Forms activation clusters composed of several receptors depending on the ligand, these clusters trigger signaling from the cell surface and subsequently are targeted to the Golgi in a lipid-raft dependent pathway. Forms the cluster TLR2:TLR6:CD14:CD36 in response to diacylated lipopeptides and TLR2:TLR1:CD14 in response to triacylated lipopeptides. Required for normal uptake of M.tuberculosis, a process that is inhibited by M.tuberculosis LppM.
Tissue Specificity Highly expressed in peripheral blood leukocytes, in particular in monocytes, in bone marrow, lymph node and in spleen. Also detected in lung and in fetal liver. Levels are low in other tissues.
KEGG Pathway
Phagosome (hsa04145 )
PI3K-Akt sig.ling pathway (hsa04151 )
Neutrophil extracellular trap formation (hsa04613 )
Toll-like receptor sig.ling pathway (hsa04620 )
Salmonella infection (hsa05132 )
Legionellosis (hsa05134 )
Leishmaniasis (hsa05140 )
Chagas disease (hsa05142 )
Malaria (hsa05144 )
Toxoplasmosis (hsa05145 )
Amoebiasis (hsa05146 )
Tuberculosis (hsa05152 )
Hepatitis B (hsa05161 )
Measles (hsa05162 )
Herpes simplex virus 1 infection (hsa05168 )
Epstein-Barr virus infection (hsa05169 )
Human immunodeficiency virus 1 infection (hsa05170 )
Coro.virus disease - COVID-19 (hsa05171 )
Proteoglycans in cancer (hsa05205 )
PD-L1 expression and PD-1 checkpoint pathway in cancer (hsa05235 )
Inflammatory bowel disease (hsa05321 )
Rheumatoid arthritis (hsa05323 )
Lipid and atherosclerosis (hsa05417 )
Reactome Pathway
Beta defensins (R-HSA-1461957 )
MyD88 (R-HSA-166058 )
Toll Like Receptor TLR1 (R-HSA-168179 )
Toll Like Receptor TLR6 (R-HSA-168188 )
MyD88 deficiency (TLR2/4) (R-HSA-5602498 )
IRAK4 deficiency (TLR2/4) (R-HSA-5603041 )
Regulation of TLR by endogenous ligand (R-HSA-5686938 )
Neutrophil degranulation (R-HSA-6798695 )
Modulation by Mtb of host immune system (R-HSA-9637628 )
SARS-CoV-2 activates/modulates innate and adaptive immune responses (R-HSA-9705671 )
ER-Phagosome pathway (R-HSA-1236974 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
42 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Toll-like receptor 2 (TLR2). [1]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Toll-like receptor 2 (TLR2). [2]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Toll-like receptor 2 (TLR2). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Toll-like receptor 2 (TLR2). [4]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Toll-like receptor 2 (TLR2). [5]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Toll-like receptor 2 (TLR2). [6]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Toll-like receptor 2 (TLR2). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of Toll-like receptor 2 (TLR2). [8]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide decreases the expression of Toll-like receptor 2 (TLR2). [9]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of Toll-like receptor 2 (TLR2). [10]
Methotrexate DM2TEOL Approved Methotrexate decreases the expression of Toll-like receptor 2 (TLR2). [11]
Phenobarbital DMXZOCG Approved Phenobarbital affects the expression of Toll-like receptor 2 (TLR2). [12]
Progesterone DMUY35B Approved Progesterone increases the expression of Toll-like receptor 2 (TLR2). [13]
Bortezomib DMNO38U Approved Bortezomib increases the expression of Toll-like receptor 2 (TLR2). [9]
Azathioprine DMMZSXQ Approved Azathioprine decreases the expression of Toll-like receptor 2 (TLR2). [11]
Diclofenac DMPIHLS Approved Diclofenac decreases the expression of Toll-like receptor 2 (TLR2). [11]
Piroxicam DMTK234 Approved Piroxicam decreases the expression of Toll-like receptor 2 (TLR2). [11]
Sodium lauryl sulfate DMLJ634 Approved Sodium lauryl sulfate increases the expression of Toll-like receptor 2 (TLR2). [14]
Indomethacin DMSC4A7 Approved Indomethacin increases the expression of Toll-like receptor 2 (TLR2). [15]
Simvastatin DM30SGU Approved Simvastatin increases the expression of Toll-like receptor 2 (TLR2). [16]
Prednisolone DMQ8FR2 Approved Prednisolone decreases the expression of Toll-like receptor 2 (TLR2). [11]
Hydrocortisone DMGEMB7 Approved Hydrocortisone increases the expression of Toll-like receptor 2 (TLR2). [17]
Methylprednisolone DM4BDON Approved Methylprednisolone decreases the expression of Toll-like receptor 2 (TLR2). [11]
Cholecalciferol DMGU74E Approved Cholecalciferol decreases the expression of Toll-like receptor 2 (TLR2). [18]
Vitamin A DMJ2AH4 Approved Vitamin A increases the expression of Toll-like receptor 2 (TLR2). [17]
Glutathione DMAHMT9 Approved Glutathione decreases the expression of Toll-like receptor 2 (TLR2). [19]
Tibolone DM78XFG Approved Tibolone increases the expression of Toll-like receptor 2 (TLR2). [20]
Alfacalcidol DM1237M Phase 4 Alfacalcidol decreases the expression of Toll-like receptor 2 (TLR2). [21]
Resveratrol DM3RWXL Phase 3 Resveratrol decreases the activity of Toll-like receptor 2 (TLR2). [22]
Atorvastatin DMF28YC Phase 3 Trial Atorvastatin increases the expression of Toll-like receptor 2 (TLR2). [16]
Afimoxifene DMFORDT Phase 2 Afimoxifene increases the expression of Toll-like receptor 2 (TLR2). [6]
phorbol 12-myristate 13-acetate DMJWD62 Phase 2 phorbol 12-myristate 13-acetate increases the expression of Toll-like receptor 2 (TLR2). [23]
PMID27336223-Compound-11 DMBN6KU Patented PMID27336223-Compound-11 decreases the expression of Toll-like receptor 2 (TLR2). [25]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Toll-like receptor 2 (TLR2). [26]
Acetaldehyde DMJFKG4 Investigative Acetaldehyde increases the expression of Toll-like receptor 2 (TLR2). [27]
Paraquat DMR8O3X Investigative Paraquat increases the expression of Toll-like receptor 2 (TLR2). [28]
D-glucose DMMG2TO Investigative D-glucose decreases the expression of Toll-like receptor 2 (TLR2). [29]
15-deoxy-Delta(12, 14)-prostaglandin J(2) DM8VUX3 Investigative 15-deoxy-Delta(12, 14)-prostaglandin J(2) decreases the expression of Toll-like receptor 2 (TLR2). [30]
1,6-hexamethylene diisocyanate DMLB3RT Investigative 1,6-hexamethylene diisocyanate affects the expression of Toll-like receptor 2 (TLR2). [31]
Beta-D-Glucose DM5IHYP Investigative Beta-D-Glucose decreases the expression of Toll-like receptor 2 (TLR2). [32]
muramyl dipeptide DM4FR71 Investigative muramyl dipeptide increases the activity of Toll-like receptor 2 (TLR2). [33]
hydroxycitronellal DMFHCV9 Investigative hydroxycitronellal increases the expression of Toll-like receptor 2 (TLR2). [14]
------------------------------------------------------------------------------------
⏷ Show the Full List of 42 Drug(s)
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Toll-like receptor 2 (TLR2). [24]
------------------------------------------------------------------------------------

References

1 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
2 Transcriptional and Metabolic Dissection of ATRA-Induced Granulocytic Differentiation in NB4 Acute Promyelocytic Leukemia Cells. Cells. 2020 Nov 5;9(11):2423. doi: 10.3390/cells9112423.
3 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
4 TLR2 and TLR3 expression as a biomarker for the risk of doxorubicin-induced heart failure. Toxicol Lett. 2018 Oct 1;295:205-211. doi: 10.1016/j.toxlet.2018.06.1219. Epub 2018 Jun 28.
5 Analysis of the in vitro synergistic effect of 5-fluorouracil and cisplatin on cervical carcinoma cells. Int J Gynecol Cancer. 2006 May-Jun;16(3):1321-9.
6 Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol. 2013 May;169(1):167-78.
7 Dual anti-inflammatory and anti-parasitic action of topical ivermectin 1% in papulopustular rosacea. J Eur Acad Dermatol Venereol. 2017 Nov;31(11):1907-1911. doi: 10.1111/jdv.14437. Epub 2017 Aug 29.
8 Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-B signaling pathway. Immunobiology. 2011 Mar;216(3):367-73. doi: 10.1016/j.imbio.2010.07.011. Epub 2010 Aug 19.
9 Synergistic antiproliferative effect of arsenic trioxide combined with bortezomib in HL60 cell line and primary blasts from patients affected by myeloproliferative disorders. Cancer Genet Cytogenet. 2010 Jun;199(2):110-20. doi: 10.1016/j.cancergencyto.2010.02.010.
10 Effects of arsenic disulfide on apoptosis, histone acetylation, toll like receptor 2 activation, and erythropoiesis in bone marrow mononuclear cells of myelodysplastic syndromes patients in vitro. Leuk Res. 2017 Nov;62:4-11. doi: 10.1016/j.leukres.2017.09.010. Epub 2017 Sep 19.
11 Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration. Arthritis Res Ther. 2009;11(1):R15.
12 Reproducible chemical-induced changes in gene expression profiles in human hepatoma HepaRG cells under various experimental conditions. Toxicol In Vitro. 2009 Apr;23(3):466-75. doi: 10.1016/j.tiv.2008.12.018. Epub 2008 Dec 30.
13 Progesterone regulation of implantation-related genes: new insights into the role of oestrogen. Cell Mol Life Sci. 2007 Apr;64(7-8):1009-32.
14 Chemicals with weak skin sensitizing properties can be identified using low-density microarrays on immature dendritic cells. Toxicol Lett. 2007 Nov 1;174(1-3):98-109. doi: 10.1016/j.toxlet.2007.08.015. Epub 2007 Sep 5.
15 Development of an alternative zebrafish model for drug-induced intestinal toxicity. J Appl Toxicol. 2018 Feb;38(2):259-273. doi: 10.1002/jat.3520. Epub 2017 Oct 13.
16 Differential effects of statins on relevant functions of human monocyte-derived dendritic cells. J Leukoc Biol. 2006 Mar;79(3):529-38. doi: 10.1189/jlb.0205064. Epub 2005 Dec 30.
17 Differential regulation of Toll-like receptor and CD14 pathways by retinoids and corticosteroids in human sebocytes. Dermatology. 2006;213(3):266. doi: 10.1159/000095056.
18 Vitamin D treatment modulates organic dust-induced cellular and airway inflammatory consequences. J Biochem Mol Toxicol. 2013 Jan;27(1):77-86. doi: 10.1002/jbt.21467. Epub 2012 Dec 20.
19 Mechanical stress-activated immune response genes via Sirtuin 1 expression in human periodontal ligament cells. Clin Exp Immunol. 2012 Apr;168(1):113-24. doi: 10.1111/j.1365-2249.2011.04549.x.
20 A microarray study on the effect of four hormone therapy regimens on gene transcription in whole blood from healthy postmenopausal women. Thromb Res. 2012 Jul;130(1):45-51. doi: 10.1016/j.thromres.2011.12.009. Epub 2012 Jan 2.
21 1-alpha-calcidol modulates major human monocyte antigens and toll-like receptors TLR 2 and TLR4 in vitro. Eur J Med Res. 2005 Apr 20;10(4):179-82.
22 Resveratrol inhibits Staphylococcus aureus-induced TLR2/MyD88/NF-B-dependent VCAM-1 expression in human lung epithelial cells. Clin Sci (Lond). 2014 Sep;127(6):375-90. doi: 10.1042/CS20130816.
23 Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke. Toxicol Lett. 2017 Sep 5;279:9-15. doi: 10.1016/j.toxlet.2017.07.878. Epub 2017 Jul 15.
24 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
25 In vitro modulation of TLR-2, CD1d and IL-10 by adapalene on normal human skin and acne inflammatory lesions. Exp Dermatol. 2007 Jun;16(6):500-6. doi: 10.1111/j.1600-0625.2007.00552.x.
26 Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 2010 Oct 15;248(2):111-21.
27 Transcriptome profile analysis of saturated aliphatic aldehydes reveals carbon number-specific molecules involved in pulmonary toxicity. Chem Res Toxicol. 2014 Aug 18;27(8):1362-70.
28 Epigallocatechin-3-gallate alleviates paraquat-induced acute lung injury and inhibits upregulation of toll-like receptors. Life Sci. 2017 Feb 1;170:25-32. doi: 10.1016/j.lfs.2016.11.021. Epub 2016 Nov 24.
29 Glucose-based peritoneal dialysis fluids downregulate toll-like receptors and trigger hyporesponsiveness to pathogen-associated molecular patterns in human peritoneal mesothelial cells. Clin Vaccine Immunol. 2010 May;17(5):757-63. doi: 10.1128/CVI.00453-09. Epub 2010 Mar 3.
30 Effects of 15-deoxy-???,??-prostaglandin J? on the production of IL-8 and the expression of Toll-like receptor 2 in human primary keratinocytes stimulated with lipopolysaccharide. Mol Biol Rep. 2011 Jun;38(5):3207-12. doi: 10.1007/s11033-010-9993-5. Epub 2010 Feb 21.
31 Gene profiles of a human alveolar epithelial cell line after in vitro exposure to respiratory (non-)sensitizing chemicals: identification of discriminating genetic markers and pathway analysis. Toxicol Lett. 2009 Feb 25;185(1):16-22. doi: 10.1016/j.toxlet.2008.11.017. Epub 2008 Dec 6.
32 Fungal cell wall agents suppress the innate inflammatory cytokine responses of human peripheral blood mononuclear cells challenged with lipopolysaccharide in vitro. Int Immunopharmacol. 2011 Aug;11(8):939-47. doi: 10.1016/j.intimp.2011.02.006. Epub 2011 Feb 15.
33 Dendritic cell maturation induced by muramyl dipeptide (MDP) derivatives: monoacylated MDP confers TLR2/TLR4 activation. J Immunol. 2005 Jun 1;174(11):7096-103. doi: 10.4049/jimmunol.174.11.7096.