General Information of Drug Off-Target (DOT) (ID: OTPTRCNW)

DOT Name Bifunctional epoxide hydrolase 2 (EPHX2)
Gene Name EPHX2
Related Disease
Hypercholesterolemia, familial, 1 ( )
UniProt ID
HYES_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1S8O ; 1VJ5 ; 1ZD2 ; 1ZD3 ; 1ZD4 ; 1ZD5 ; 3ANS ; 3ANT ; 3I1Y ; 3I28 ; 3KOO ; 3OTQ ; 3PDC ; 3WK4 ; 3WK5 ; 3WK6 ; 3WK7 ; 3WK8 ; 3WK9 ; 3WKA ; 3WKB ; 3WKC ; 3WKD ; 3WKE ; 4C4X ; 4C4Y ; 4C4Z ; 4HAI ; 4J03 ; 4JNC ; 4OCZ ; 4OD0 ; 4X6X ; 4X6Y ; 4Y2J ; 4Y2P ; 4Y2Q ; 4Y2R ; 4Y2S ; 4Y2T ; 4Y2U ; 4Y2V ; 4Y2X ; 4Y2Y ; 5AHX ; 5AI0 ; 5AI4 ; 5AI5 ; 5AI6 ; 5AI8 ; 5AI9 ; 5AIA ; 5AIB ; 5AIC ; 5AK3 ; 5AK4 ; 5AK5 ; 5AK6 ; 5AKE ; 5AKG ; 5AKH ; 5AKI ; 5AKJ ; 5AKK ; 5AKL ; 5AKX ; 5AKY ; 5AKZ ; 5ALD ; 5ALE ; 5ALF ; 5ALG ; 5ALH ; 5ALI ; 5ALJ ; 5ALK ; 5ALL ; 5ALM ; 5ALN ; 5ALO ; 5ALP ; 5ALQ ; 5ALR ; 5ALS ; 5ALT ; 5ALU ; 5ALV ; 5ALW ; 5ALX ; 5ALY ; 5ALZ ; 5AM0 ; 5AM1 ; 5AM2 ; 5AM3 ; 5AM4 ; 5AM5 ; 5FP0 ; 5MWA ; 6AUM ; 6I5E ; 6I5G ; 7EBA
EC Number
3.1.3.76; 3.3.2.10
Pfam ID
PF00561 ; PF00702
Sequence
MTLRAAVFDLDGVLALPAVFGVLGRTEEALALPRGLLNDAFQKGGPEGATTRLMKGEITL
SQWIPLMEENCRKCSETAKVCLPKNFSIKEIFDKAISARKINRPMLQAALMLRKKGFTTA
ILTNTWLDDRAERDGLAQLMCELKMHFDFLIESCQVGMVKPEPQIYKFLLDTLKASPSEV
VFLDDIGANLKPARDLGMVTILVQDTDTALKELEKVTGIQLLNTPAPLPTSCNPSDMSHG
YVTVKPRVRLHFVELGSGPAVCLCHGFPESWYSWRYQIPALAQAGYRVLAMDMKGYGESS
APPEIEEYCMEVLCKEMVTFLDKLGLSQAVFIGHDWGGMLVWYMALFYPERVRAVASLNT
PFIPANPNMSPLESIKANPVFDYQLYFQEPGVAEAELEQNLSRTFKSLFRASDESVLSMH
KVCEAGGLFVNSPEEPSLSRMVTEEEIQFYVQQFKKSGFRGPLNWYRNMERNWKWACKSL
GRKILIPALMVTAEKDFVLVPQMSQHMEDWIPHLKRGHIEDCGHWTQMDKPTEVNQILIK
WLDSDARNPPVVSKM
Function
Bifunctional enzyme. The C-terminal domain has epoxide hydrolase activity and acts on epoxides (alkene oxides, oxiranes) and arene oxides. Plays a role in xenobiotic metabolism by degrading potentially toxic epoxides. Also determines steady-state levels of physiological mediators ; Bifunctional enzyme. The N-terminal domain has lipid phosphatase activity, with the highest activity towards threo-9,10-phosphonooxy-hydroxy-octadecanoic acid, followed by erythro-9,10-phosphonooxy-hydroxy-octadecanoic acid, 12-phosphonooxy-octadec-9Z-enoic acid and 12-phosphonooxy-octadec-9E-enoic acid. Has phosphatase activity toward lyso-glycerophospholipids with also some lower activity toward lysolipids of sphingolipid and isoprenoid phosphates.
KEGG Pathway
Arachidonic acid metabolism (hsa00590 )
Metabolic pathways (hsa01100 )
Peroxisome (hsa04146 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Chemical carcinogenesis - reactive oxygen species (hsa05208 )
Reactome Pathway
Biosynthesis of maresins (R-HSA-9018682 )
Peroxisomal protein import (R-HSA-9033241 )
Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET) (R-HSA-2142670 )

Molecular Interaction Atlas (MIA) of This DOT

1 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Hypercholesterolemia, familial, 1 DISU411W No Known Autosomal dominant [1]
------------------------------------------------------------------------------------
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 3 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Carbamazepine DMZOLBI Approved Bifunctional epoxide hydrolase 2 (EPHX2) increases the Drug dependence ADR of Carbamazepine. [26]
Phenytoin DMNOKBV Approved Bifunctional epoxide hydrolase 2 (EPHX2) increases the Thrombocytopenia ADR of Phenytoin. [26]
Cimetidine DMH61ZB Approved Bifunctional epoxide hydrolase 2 (EPHX2) increases the Thrombocytopenia ADR of Cimetidine. [26]
------------------------------------------------------------------------------------
1 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the methylation of Bifunctional epoxide hydrolase 2 (EPHX2). [2]
------------------------------------------------------------------------------------
27 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [3]
Acetaminophen DMUIE76 Approved Acetaminophen decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [4]
Doxorubicin DMVP5YE Approved Doxorubicin decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [5]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [6]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [7]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [8]
Hydrogen peroxide DM1NG5W Approved Hydrogen peroxide affects the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [9]
Zoledronate DMIXC7G Approved Zoledronate decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [10]
Selenium DM25CGV Approved Selenium increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [11]
Phenobarbital DMXZOCG Approved Phenobarbital decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [12]
Troglitazone DM3VFPD Approved Troglitazone increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [13]
Fenofibrate DMFKXDY Approved Fenofibrate affects the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [14]
Bezafibrate DMZDCS0 Approved Bezafibrate affects the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [14]
Dihydroxyacetone DMM1LG2 Approved Dihydroxyacetone decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [15]
Gemfibrozil DMD8Q3J Approved Gemfibrozil affects the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [14]
Urethane DM7NSI0 Phase 4 Urethane decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [16]
Resveratrol DM3RWXL Phase 3 Resveratrol increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [17]
Genistein DM0JETC Phase 2/3 Genistein increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [18]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [3]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [19]
PIRINIXIC ACID DM82Y75 Preclinical PIRINIXIC ACID affects the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [14]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [20]
Paraquat DMR8O3X Investigative Paraquat decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [21]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [22]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone increases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [23]
Indirubin-3'-monoxime DMLRQH0 Investigative Indirubin-3'-monoxime decreases the expression of Bifunctional epoxide hydrolase 2 (EPHX2). [24]
5S-HETE DM3Z6G4 Investigative 5S-HETE increases the activity of Bifunctional epoxide hydrolase 2 (EPHX2). [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 27 Drug(s)

References

1 The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014 Nov 13;515(7526):216-21. doi: 10.1038/nature13908. Epub 2014 Oct 29.
2 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
3 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
4 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
5 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
6 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
7 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
8 Arsenic trioxide induces different gene expression profiles of genes related to growth and apoptosis in glioma cells dependent on the p53 status. Mol Biol Rep. 2008 Sep;35(3):421-9.
9 Global gene expression analysis reveals differences in cellular responses to hydroxyl- and superoxide anion radical-induced oxidative stress in caco-2 cells. Toxicol Sci. 2010 Apr;114(2):193-203. doi: 10.1093/toxsci/kfp309. Epub 2009 Dec 31.
10 Interleukin-19 as a translational indicator of renal injury. Arch Toxicol. 2015 Jan;89(1):101-6.
11 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
12 Xenobiotic CAR activators induce Dlk1-Dio3 locus noncoding RNA expression in mouse liver. Toxicol Sci. 2017 Aug 1;158(2):367-378.
13 Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol In Vitro. 2009 Oct;23(7):1387-95.
14 Expression of cytochrome P450 epoxygenases and soluble epoxide hydrolase is regulated by hypolipidemic drugs in dose-dependent manner. Toxicol Appl Pharmacol. 2018 Sep 15;355:156-163.
15 The sunless tanning agent dihydroxyacetone induces stress response gene expression and signaling in cultured human keratinocytes and reconstructed epidermis. Redox Biol. 2020 Sep;36:101594. doi: 10.1016/j.redox.2020.101594. Epub 2020 May 29.
16 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
17 Anti-proliferative and gene expression actions of resveratrol in breast cancer cells in vitro. Oncotarget. 2014 Dec 30;5(24):12891-907.
18 Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein. Mol Cell Proteomics. 2011 Jan;10(1):M110.002170.
19 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
20 Environmental pollutant induced cellular injury is reflected in exosomes from placental explants. Placenta. 2020 Jan 1;89:42-49. doi: 10.1016/j.placenta.2019.10.008. Epub 2019 Oct 17.
21 An in vitro strategy using multiple human induced pluripotent stem cell-derived models to assess the toxicity of chemicals: A case study on paraquat. Toxicol In Vitro. 2022 Jun;81:105333. doi: 10.1016/j.tiv.2022.105333. Epub 2022 Feb 16.
22 Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue. J Biol Chem. 2013 May 17;288(20):14189-99.
23 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.
24 The effects of indirubin-3'-monoxime, a novel AHR ligand, on stress and toxicity-related gene/protein expression in human U937 cells undergoing differentiation and activation. J Immunotoxicol. 2006 Jan 1;3(1):1-10.
25 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-B-dependent mechanism. Arch Toxicol. 2016 Feb;90(2):359-73.
26 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.