General Information of Disease (ID: DISU411W)

Disease Name Hypercholesterolemia, familial, 1
Synonyms
FHC; low density lipoprotein cholesterol level quantitative trait locus 2; hypercholesterolemia, susceptibility to; hyper-low-density-lipoproteinemia; hyperlipoproteinemia, type 2; LDL receptor disorder; hypercholesterolemia, familial, modifier of; hypercholesterolemia, familial, 1; LDL cholesterol level QTL2; hyperlipoproteinemia, type 2A; hypercholesterolemia, familial; hypercholesterolemic xanthomatosis, familial; FHCL1; hypercholesterolemia, familial, due to ldlr defect, modifier of
Disease Hierarchy
DISC06IX: Familial hypercholesterolemia
DISU411W: Hypercholesterolemia, familial, 1
Disease Identifiers
MONDO ID
MONDO_0007750
MESH ID
D006938
UMLS CUI
C0745103
OMIM ID
143890
MedGen ID
152875
SNOMED CT ID
397915002

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 38 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
ABCA1 TTJW1GN Limited Genetic Variation [1]
HMGCR TTPADOQ Limited Genetic Variation [2]
LIPA TTS8T1M Limited Biomarker [3]
ADH1A TT5AHZ0 moderate Genetic Variation [4]
KIR2DL1 TT4UXPE moderate Biomarker [5]
ABCG5 TTKZ7WY Strong Biomarker [6]
ALOX5AP TTDMBF5 Strong Genetic Variation [7]
ANGPTL3 TT59GO7 Strong Biomarker [8]
APOA1 TT5S8DR Strong Biomarker [9]
APOA2 TTGQA9W Strong Genetic Variation [10]
APOC3 TTXOZQ1 Strong Biomarker [11]
APOL1 TTDB8PW Strong Altered Expression [12]
ATP2A2 TTE6THL Strong Biomarker [13]
CAD TT2YT1K Strong Biomarker [14]
CCR4 TT7HQD0 Strong Biomarker [15]
CETP TTFQAYR Strong Biomarker [16]
CXCR1 TTMWT8Z Strong Altered Expression [15]
EPHX2 TT7WVHI Strong Genetic Variation [17]
GHR TTHJWYD Strong Genetic Variation [18]
HPD TT8DSFC Strong Biomarker [19]
LIPG TTHSZXO Strong Genetic Variation [20]
LPL TTOF3WZ Strong Biomarker [20]
MYH2 TTBIL13 Strong Genetic Variation [21]
MYH7 TTNIMDP Strong Genetic Variation [22]
NPC1L1 TTPD1CN Strong Genetic Variation [23]
PLA2G7 TTDNFMT Strong Altered Expression [24]
PLN TTMCVJF Strong Biomarker [25]
PON1 TT9LX82 Strong Genetic Variation [26]
POR TTOQ9GZ Strong Genetic Variation [27]
SCN8A TT54ERL Strong Biomarker [28]
TNNI3 TTNLDK6 Strong Genetic Variation [29]
TNNT2 TTWAS18 Strong Genetic Variation [30]
ADRB3 TTMXGCW Definitive Genetic Variation [31]
APOA4 TTNC3WS Definitive Biomarker [11]
APOH TT2OUI9 Definitive Genetic Variation [32]
GSS TTVEWR4 Definitive Biomarker [33]
LCAT TTGZ91P Definitive Altered Expression [34]
LDLR TTH0DUS Definitive Semidominant [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 38 DTT(s)
This Disease Is Related to 2 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
ABCA2 DTJ4NEG Strong Altered Expression [36]
SLC29A3 DTZAWTH Strong Genetic Variation [37]
------------------------------------------------------------------------------------
This Disease Is Related to 6 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
EPHX2 DER5U19 No Known Autosomal dominant [38]
PON2 DEHJU7E Disputed Genetic Variation [39]
MARS1 DE0K52I moderate Biomarker [40]
BAAT DERA3OF Strong Genetic Variation [41]
CHDH DEAHED0 Strong Biomarker [42]
CYP7A1 DEDZRQ1 Strong Genetic Variation [43]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
This Disease Is Related to 43 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
EPHX2 OTPTRCNW No Known Autosomal dominant [38]
SLA2 OTNVE666 moderate Biomarker [40]
ABCG8 OTIJ76XW Strong Biomarker [44]
ACTC1 OTJU04B1 Strong Genetic Variation [45]
ADPRH OTLJ5511 Strong Genetic Variation [46]
AGO2 OT4JY32Q Strong Biomarker [19]
CCN6 OTRFHQ2Z Strong Biomarker [19]
CELSR2 OTON6JSZ Strong Genetic Variation [47]
COG2 OTKQH4N4 Strong Biomarker [48]
COL9A1 OTWBR27Y Strong Biomarker [28]
COL9A2 OT1ZBDBV Strong Biomarker [28]
COL9A3 OTCUJOEK Strong Biomarker [28]
COMP OTS2FPMI Strong Biomarker [28]
COX7B OT67PIDP Strong Biomarker [49]
EXT1 OTRPALJK Strong Genetic Variation [50]
EXT2 OT8IR5QN Strong Genetic Variation [50]
LDLRAP1 OT6QTX7R Strong Genetic Variation [51]
LIPC OTZY5SC9 Strong Posttranslational Modification [52]
MYL12B OTXMLQOT Strong Genetic Variation [53]
MYL9 OT6B22JB Strong Genetic Variation [53]
PHACTR1 OTAMPX9V Strong Genetic Variation [54]
PLAAT1 OTM3M6P4 Strong Altered Expression [55]
PNPLA5 OTZ1GP03 Strong Genetic Variation [43]
PRH1 OTQZ6HX0 Strong Genetic Variation [56]
SORL1 OTQ8FFNS Strong Biomarker [57]
SRCAP OT82P6CN Strong Genetic Variation [58]
STAP1 OTUTZH0W Strong Biomarker [3]
TJP2 OTQUY6BV Strong Genetic Variation [41]
TNNT1 OT8PBOAR Strong Genetic Variation [59]
TPM1 OTD73X6R Strong Genetic Variation [60]
APOA5 OTEVKLVA Definitive Genetic Variation [61]
APOC2 OTLINYIQ Definitive Altered Expression [62]
C4BPA OTHNH6Y8 Definitive Genetic Variation [63]
C4BPB OTJ70B0K Definitive Genetic Variation [63]
CRABP2 OTY01V9G Definitive Genetic Variation [64]
CXCL3 OTSL94KH Definitive Altered Expression [65]
FGB OT6RKLI9 Definitive Genetic Variation [39]
JPH3 OTHTJO2I Definitive Biomarker [16]
LDLR OTH559LU Definitive Semidominant [35]
MYLIP OTL0PFGV Definitive Genetic Variation [66]
SACS OTZGXQ8A Definitive Altered Expression [67]
SCNN1A OTE2KVZV Definitive Genetic Variation [68]
TRIB1 OTPEO17G Definitive Genetic Variation [69]
------------------------------------------------------------------------------------
⏷ Show the Full List of 43 DOT(s)

References

1 Impact of Cholesterol on Ischemic Stroke in Different Human-Like Hamster Models: A New Animal Model for Ischemic Stroke Study.Cells. 2019 Sep 4;8(9):1028. doi: 10.3390/cells8091028.
2 Role of rs3846662 and HMGCR alternative splicing in statin efficacy and baseline lipid levels in familial hypercholesterolemia.Pharmacogenet Genomics. 2016 Jan;26(1):1-11. doi: 10.1097/FPC.0000000000000178.
3 Predicted pathogenic mutations in STAP1 are not associated with clinically defined familial hypercholesterolemia.Atherosclerosis. 2020 Jan;292:143-151. doi: 10.1016/j.atherosclerosis.2019.11.025. Epub 2019 Nov 29.
4 Microsomal transfer protein (MTP) inhibition-a novel approach to the treatment of homozygous hypercholesterolemia.Ann Med. 2014 Nov;46(7):464-74. doi: 10.3109/07853890.2014.931100. Epub 2014 Jul 2.
5 Association of killer cell immunoglobulin-like receptor gene 2DL1 and its HLA-C2 ligand with family history of cancer in oral squamous cell carcinoma.Immunogenetics. 2014 Aug;66(7-8):439-48. doi: 10.1007/s00251-014-0778-1. Epub 2014 May 13.
6 ABCG5/G8 gene is associated with hypercholesterolemias without mutation in candidate genes and noncholesterol sterols.J Clin Lipidol. 2017 Nov-Dec;11(6):1432-1440.e4. doi: 10.1016/j.jacl.2017.09.005. Epub 2017 Oct 4.
7 5-Lipoxygenase activating protein (ALOX5AP) gene variants associate with the presence of xanthomas in familial hypercholesterolemia.Atherosclerosis. 2009 Sep;206(1):223-7. doi: 10.1016/j.atherosclerosis.2009.02.019. Epub 2009 Feb 25.
8 ANGPTL3 Mutations in Unrelated Chinese Han Patients with Familial Hypercholesterolemia.Curr Pharm Des. 2019;25(2):190-200. doi: 10.2174/1381612825666190228000932.
9 Anti-ApoA-1 IgGs in Familial Hypercholesterolemia Display Paradoxical Associations with Lipid Profile and Promote Foam Cell Formation.J Clin Med. 2019 Nov 21;8(12):2035. doi: 10.3390/jcm8122035.
10 Interaction between the LDL-receptor gene bearing a novel mutation and a variant in the apolipoprotein A-II promoter: molecular study in a 1135-member familial hypercholesterolemia kindred.J Hum Genet. 2002;47(12):656-64. doi: 10.1007/s100380200101.
11 Genetic determinants of plasma HDL-cholesterol levels in familial hypercholesterolemia.Eur J Hum Genet. 2005 Oct;13(10):1137-42. doi: 10.1038/sj.ejhg.5201467.
12 ApoL1 levels in high density lipoprotein and cardiovascular event presentation in patients with familial hypercholesterolemia.J Lipid Res. 2016 Jun;57(6):1059-73. doi: 10.1194/jlr.P061598. Epub 2016 Apr 25.
13 Long-term rescue of a familial hypertrophic cardiomyopathy caused by a mutation in the thin filament protein, tropomyosin, via modulation of a calcium cycling protein.J Mol Cell Cardiol. 2011 Nov;51(5):812-20. doi: 10.1016/j.yjmcc.2011.07.026. Epub 2011 Aug 5.
14 Guidance for Pediatric Familial Hypercholesterolemia 2017.J Atheroscler Thromb. 2018 Jun 1;25(6):539-553. doi: 10.5551/jat.CR002. Epub 2018 Feb 6.
15 miR-505-3p controls chemokine receptor up-regulation in macrophages: role in familial hypercholesterolemia.FASEB J. 2018 Feb;32(2):601-612. doi: 10.1096/fj.201700476RR.
16 Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia.Arterioscler Thromb Vasc Biol. 2011 Jul;31(7):1675-81. doi: 10.1161/ATVBAHA.111.227181. Epub 2011 Apr 28.
17 Soluble epoxide hydrolase variant (Glu287Arg) modifies plasma total cholesterol and triglyceride phenotype in familial hypercholesterolemia: intrafamilial association study in an eight-generation hyperlipidemic kindred.J Hum Genet. 2004;49(1):29-34. doi: 10.1007/s10038-003-0103-6. Epub 2003 Dec 13.
18 Growth hormone receptor variant (L526I) modifies plasma HDL cholesterol phenotype in familial hypercholesterolemia: intra-familial association study in an eight-generation hyperlipidemic kindred.Am J Med Genet A. 2003 Aug 30;121A(2):136-40. doi: 10.1002/ajmg.a.20172.
19 Genotype of the mutant LDL receptor allele is associated with LDL particle size heterogeneity in familial hypercholesterolemia.Atherosclerosis. 2006 Jan;184(1):163-70. doi: 10.1016/j.atherosclerosis.2005.03.027.
20 Changes in lipoprotein lipase and endothelial lipase mass in familial hypercholesterolemia during three-drug lipid-lowering combination therapy.Lipids Health Dis. 2016 Apr 2;15:66. doi: 10.1186/s12944-016-0238-z.
21 Functional characterization of Dictyostelium discoideum mutant myosins equivalent to human familial hypertrophic cardiomyopathy.Adv Exp Med Biol. 1998;453:131-7. doi: 10.1007/978-1-4684-6039-1_16.
22 Denaturing high performance liquid chromatography: high throughput mutation screening in familial hypertrophic cardiomyopathy and SNP genotyping in motor neurone disease.J Clin Pathol. 2005 May;58(5):479-85. doi: 10.1136/jcp.2004.021642.
23 An NPC1L1 gene promoter variant is associated with autosomal dominant hypercholesterolemia.Nutr Metab Cardiovasc Dis. 2010 May;20(4):236-42. doi: 10.1016/j.numecd.2009.03.023. Epub 2009 Sep 11.
24 Lipoprotein-associated phospholipase A2 mass and activity in children with heterozygous familial hypercholesterolemia and unaffected siblings: effect of pravastatin.J Clin Lipidol. 2011 Jan-Feb;5(1):50-6. doi: 10.1016/j.jacl.2010.11.001. Epub 2010 Nov 18.
25 Rescue of familial cardiomyopathies by modifications at the level of sarcomere and Ca2+ fluxes.J Mol Cell Cardiol. 2010 May;48(5):834-42. doi: 10.1016/j.yjmcc.2010.01.003. Epub 2010 Jan 15.
26 Decreased serum PON1 arylesterase activity in familial hypercholesterolemia patients with a mutated LDLR gene.Genet Mol Biol. 2018 Jul/Sept.;41(3):570-577. doi: 10.1590/1678-4685-GMB-2016-0287. Epub 2018 Jul 23.
27 POR*28 SNP is associated with lipid response to atorvastatin in children and adolescents with familial hypercholesterolemia.Pharmacogenomics. 2014 Dec;15(16):1963-72. doi: 10.2217/pgs.14.138.
28 Genetic diagnosis of familial hypercholesterolemia in affected relatives using pedigree tracing.Clin Biochem. 1996 Aug;29(4):371-7. doi: 10.1016/0009-9120(96)00017-3.
29 Severe heart failure and early mortality in a double-mutation mouse model of familial hypertrophic cardiomyopathy.Circulation. 2008 Apr 8;117(14):1820-31. doi: 10.1161/CIRCULATIONAHA.107.755777. Epub 2008 Mar 24.
30 Hypertrophic cardiomyopathy--molecular genetic analysis of exons 9 and 11 of the TNNT2 gene in Czech patients.Methods Inf Med. 2006;45(2):169-72.
31 ADRB3 gene promoter DNA methylation in blood and visceral adipose tissue isassociated with metabolic disturbances in men.Epigenomics. 2014 Feb;6(1):33-43. doi: 10.2217/epi.13.82.
32 Apolipoprotein H variant modifies plasma triglyceride phenotype in familial hypercholesterolemia: a molecular study in an eight-generation hyperlipidemic family.J Atheroscler Thromb. 2003;10(2):79-84. doi: 10.5551/jat.10.79.
33 Enhanced reduction in oxidative stress and altered glutathione and thioredoxin system response to unsaturated fatty acid load in familial hypercholesterolemia.Clin Biochem. 2014 Dec;47(18):291-7. doi: 10.1016/j.clinbiochem.2014.09.006. Epub 2014 Sep 15.
34 Probucol promotes reverse cholesterol transport in heterozygous familial hypercholesterolemia. Effects on apolipoprotein AI-containing lipoprotein particles.Atherosclerosis. 2000 Oct;152(2):433-40. doi: 10.1016/s0021-9150(99)00493-1.
35 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
36 Human ATP-binding cassette transporter-2 (ABCA2) positively regulates low-density lipoprotein receptor expression and negatively regulates cholesterol esterification in Chinese hamster ovary cells.Biochim Biophys Acta. 2004 Jul 5;1683(1-3):89-100. doi: 10.1016/j.bbalip.2004.04.009.
37 Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai-Dorfman disease.PLoS Genet. 2010 Feb 5;6(2):e1000833. doi: 10.1371/journal.pgen.1000833.
38 The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014 Nov 13;515(7526):216-21. doi: 10.1038/nature13908. Epub 2014 Oct 29.
39 Polymorphisms associated with apolipoprotein B levels in Greek patients with familial hypercholesterolemia.Clin Chem Lab Med. 2006;44(7):799-806. doi: 10.1515/CCLM.2006.150.
40 The development and first results of a health-related outcomes set in familial hypercholesterolemia (FH) patients: Knowledge is health.Atherosclerosis. 2020 Jan;293:11-17. doi: 10.1016/j.atherosclerosis.2019.11.030. Epub 2019 Nov 30.
41 Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nat Genet. 2003 May;34(1):91-6. doi: 10.1038/ng1147.
42 Familial hypercholesterolemia treatments: Guidelines and new therapies.Atherosclerosis. 2018 Oct;277:483-492. doi: 10.1016/j.atherosclerosis.2018.06.859.
43 Genes Potentially Associated with Familial Hypercholesterolemia.Biomolecules. 2019 Nov 29;9(12):807. doi: 10.3390/biom9120807.
44 Rare and Deleterious Mutations in ABCG5/ABCG8 Genes Contribute to Mimicking and Worsening of Familial Hypercholesterolemia Phenotype.Circ J. 2019 Aug 23;83(9):1917-1924. doi: 10.1253/circj.CJ-19-0317. Epub 2019 Jul 20.
45 Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest. 1999 May 15;103(10):R39-43. doi: 10.1172/JCI6460.
46 Genetic epidemiology of autosomal recessive hypercholesterolemia in Sicily: Identification by next-generation sequencing of a new kindred.J Clin Lipidol. 2018 Jan-Feb;12(1):145-151. doi: 10.1016/j.jacl.2017.10.014. Epub 2017 Oct 27.
47 Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries.Clin Chem. 2015 Jan;61(1):231-8. doi: 10.1373/clinchem.2014.231365. Epub 2014 Nov 20.
48 LDL apheresis in Japan.Transfus Apher Sci. 2017 Oct;56(5):677-681. doi: 10.1016/j.transci.2017.08.014. Epub 2017 Aug 31.
49 Cytochrome c oxidase subunit VIIb as a potential target in familial hypercholesterolemia by bioinformatical analysis.Eur Rev Med Pharmacol Sci. 2015 Nov;19(21):4139-45.
50 Ext1 heterozygosity causes a modest effect on postprandial lipid clearance in humans.J Lipid Res. 2015 Mar;56(3):665-673. doi: 10.1194/jlr.M053504. Epub 2015 Jan 7.
51 A review of gene- and cell-based therapies for familial hypercholesterolemia.Pharmacol Res. 2019 May;143:119-132. doi: 10.1016/j.phrs.2019.03.016. Epub 2019 Mar 22.
52 Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia.Epigenetics. 2014 May;9(5):718-29. doi: 10.4161/epi.27981. Epub 2014 Feb 6.
53 In vitro rescue study of a malignant familial hypertrophic cardiomyopathy phenotype by pseudo-phosphorylation of myosin regulatory light chain.Arch Biochem Biophys. 2014 Jun 15;552-553:29-39. doi: 10.1016/j.abb.2013.12.011. Epub 2013 Dec 26.
54 PHACTR1 genotype predicts coronary artery disease in patients with familial hypercholesterolemia.J Clin Lipidol. 2018 Jul-Aug;12(4):966-971. doi: 10.1016/j.jacl.2018.04.012. Epub 2018 Apr 30.
55 Lipoprotein-associated phospholipase A?activity is increased in patients with definite familial hypercholesterolemia compared with other forms of hypercholesterolemia.Nutr Metab Cardiovasc Dis. 2018 May;28(5):517-523. doi: 10.1016/j.numecd.2018.01.012. Epub 2018 Feb 2.
56 Mutations in beta-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C.J Mol Biol. 1999 Feb 26;286(3):933-49. doi: 10.1006/jmbi.1998.2522.
57 Soluble LR11 associates with aortic root calcification in asymptomatic treated male patients with familial hypercholesterolemia.Atherosclerosis. 2017 Oct;265:299-304. doi: 10.1016/j.atherosclerosis.2017.06.018. Epub 2017 Jun 9.
58 Not all floating-harbor syndrome cases are due to mutations in exon 34 of SRCAP. Hum Mutat. 2013 Jan;34(1):88-92. doi: 10.1002/humu.22216. Epub 2012 Oct 16.
59 Epigenetic and genetic variations at the TNNT1 gene locus are associated with HDL-C levels and coronary artery disease.Epigenomics. 2016 Mar;8(3):359-71. doi: 10.2217/epi.15.120. Epub 2016 Mar 7.
60 Long-range effects of familial hypertrophic cardiomyopathy mutations E180G and D175N on the properties of tropomyosin.Biochemistry. 2012 Aug 14;51(32):6413-20. doi: 10.1021/bi3006835. Epub 2012 Aug 1.
61 Polymorphisms in apolipoprotein E and apolipoprotein A-V do not influence the lipid response to rosuvastatin but are associated with baseline lipid levels in Chinese patients with hyperlipidemia.J Clin Lipidol. 2012 Nov-Dec;6(6):585-92. doi: 10.1016/j.jacl.2012.02.005. Epub 2012 Feb 18.
62 The molecular genetics of pediatric lipid disorders: recent progress and future research directions.Pediatr Res. 1993 Oct;34(4):403-15. doi: 10.1203/00006450-199310000-00005.
63 Effects of LDL-apheresis on serum lipoprotein (a), C4b binding protein, protein C, protein S, and complement components.J Atheroscler Thromb. 1994;1(2):103-7. doi: 10.5551/jat1994.1.103.
64 Association of a polymorphism in the promoter of the cellular retinoic acid-binding protein II gene (CRABP2) with increased circulating low-density lipoprotein cholesterol.Clin Chem Lab Med. 2007;45(5):615-20. doi: 10.1515/CCLM.2007.131.
65 Overexpression of the CXCL3 gene in response to oxidized low-density lipoprotein is associated with the presence of tendon xanthomas in familial hypercholesterolemia.Biochem Cell Biol. 2009 Jun;87(3):493-8. doi: 10.1139/o09-006.
66 The MYLIP p.N342S polymorphism is associated with response to lipid-lowering therapy in Brazilian patients with familial hypercholesterolemia.Pharmacogenet Genomics. 2014 Nov;24(11):548-55. doi: 10.1097/FPC.0000000000000089.
67 Human genetics: lessons from Quebec populations.Annu Rev Genomics Hum Genet. 2001;2:69-101. doi: 10.1146/annurev.genom.2.1.69.
68 Different genes and polymorphisms affecting high-density lipoprotein cholesterol levels in Greek familial hypercholesterolemia patients.Genet Test. 2006 Fall;10(3):192-9. doi: 10.1089/gte.2006.10.192.
69 Polymorphism at the TRIB1 gene modulates plasma lipid levels: insight from the Spanish familial hypercholesterolemia cohort study.Nutr Metab Cardiovasc Dis. 2011 Dec;21(12):957-63. doi: 10.1016/j.numecd.2010.04.002. Epub 2010 Aug 6.