General Information of Drug Off-Target (DOT) (ID: OTSN2IPY)

DOT Name Natriuretic peptides B (NPPB)
Synonyms Brain natriuretic factor prohormone; preproBNP; proBNP; Gamma-brain natriuretic peptide; Iso-ANP
Gene Name NPPB
UniProt ID
ANFB_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
1YK1; 3N56
Pfam ID
PF00212
Sequence
MDPQTAPSRALLLLLFLHLAFLGGRSHPLGSPGSASDLETSGLQEQRNHLQGKLSELQVE
QTSLEPLQESPRPTGVWKSREVATEGIRGHRKMVLYTLRAPRSPKMVQGSGCFGRKMDRI
SSSSGLGCKVLRRH
Function
[Brain natriuretic peptide 32]: Cardiac hormone that plays a key role in mediating cardio-renal homeostasis. May also function as a paracrine antifibrotic factor in the heart. Acts by specifically binding and stimulating NPR1 to produce cGMP, which in turn activates effector proteins that drive various biological responses. Involved in regulating the extracellular fluid volume and maintaining the fluid-electrolyte balance through natriuresis, diuresis, vasorelaxation, and inhibition of renin and aldosterone secretion. Binds the clearance receptor NPR3 ; [NT-proBNP]: May affect cardio-renal homeostasis. Able to promote the production of cGMP although its potency is very low compared to brain natriuretic peptide 32 ; [BNP(3-32)]: May have a role in cardio-renal homeostasis. Able to promote the production of cGMP.
Tissue Specificity .Detected in the cardiac atria (at protein level) . Detected in the kidney distal tubular cells (at protein level) .
KEGG Pathway
cGMP-PKG sig.ling pathway (hsa04022 )
Vascular smooth muscle contraction (hsa04270 )
Thermogenesis (hsa04714 )

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Regulation of Drug Effects of 2 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Norepinephrine DMOUC09 Approved Natriuretic peptides B (NPPB) decreases the abundance of Norepinephrine. [36]
Aldosterone DM9S2JW Approved Natriuretic peptides B (NPPB) decreases the abundance of Aldosterone. [36]
------------------------------------------------------------------------------------
35 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate decreases the expression of Natriuretic peptides B (NPPB). [1]
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of Natriuretic peptides B (NPPB). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of Natriuretic peptides B (NPPB). [3]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of Natriuretic peptides B (NPPB). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Natriuretic peptides B (NPPB). [5]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Natriuretic peptides B (NPPB). [6]
Triclosan DMZUR4N Approved Triclosan decreases the expression of Natriuretic peptides B (NPPB). [7]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of Natriuretic peptides B (NPPB). [8]
Diethylstilbestrol DMN3UXQ Approved Diethylstilbestrol decreases the expression of Natriuretic peptides B (NPPB). [9]
Ethanol DMDRQZU Approved Ethanol decreases the expression of Natriuretic peptides B (NPPB). [10]
Cytarabine DMZD5QR Approved Cytarabine increases the expression of Natriuretic peptides B (NPPB). [11]
Melphalan DMOLNHF Approved Melphalan increases the expression of Natriuretic peptides B (NPPB). [12]
Cyclophosphamide DM4O2Z7 Approved Cyclophosphamide increases the expression of Natriuretic peptides B (NPPB). [13]
Daunorubicin DMQUSBT Approved Daunorubicin increases the expression of Natriuretic peptides B (NPPB). [14]
Pioglitazone DMKJ485 Approved Pioglitazone decreases the expression of Natriuretic peptides B (NPPB). [15]
Docetaxel DMDI269 Approved Docetaxel increases the expression of Natriuretic peptides B (NPPB). [16]
Isoproterenol DMK7MEY Approved Isoproterenol increases the expression of Natriuretic peptides B (NPPB). [17]
Prasterone DM67VKL Approved Prasterone decreases the expression of Natriuretic peptides B (NPPB). [18]
Carvedilol DMHTEAO Approved Carvedilol decreases the expression of Natriuretic peptides B (NPPB). [19]
Atenolol DMNKG1Z Approved Atenolol increases the expression of Natriuretic peptides B (NPPB). [20]
Spironolactone DM2AQ5N Approved Spironolactone decreases the expression of Natriuretic peptides B (NPPB). [21]
Valsartan DMREUQ6 Approved Valsartan decreases the expression of Natriuretic peptides B (NPPB). [22]
Dipyridamole DMXY30O Approved Dipyridamole increases the expression of Natriuretic peptides B (NPPB). [23]
Digoxin DMQCTIH Approved Digoxin increases the expression of Natriuretic peptides B (NPPB). [24]
Idarubicin DMM0XGL Approved Idarubicin increases the expression of Natriuretic peptides B (NPPB). [25]
Rhucin DM3ADGP Approved Rhucin affects the expression of Natriuretic peptides B (NPPB). [26]
Alprostadil DMWH7NQ Approved Alprostadil decreases the expression of Natriuretic peptides B (NPPB). [27]
Telmisartan DMS3GX2 Phase 3 Trial Telmisartan decreases the expression of Natriuretic peptides B (NPPB). [28]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the expression of Natriuretic peptides B (NPPB). [29]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 increases the expression of Natriuretic peptides B (NPPB). [30]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 decreases the expression of Natriuretic peptides B (NPPB). [31]
PMID28870136-Compound-49 DMTUC9E Patented PMID28870136-Compound-49 decreases the expression of Natriuretic peptides B (NPPB). [32]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the expression of Natriuretic peptides B (NPPB). [33]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Natriuretic peptides B (NPPB). [34]
5S-HETE DM3Z6G4 Investigative 5S-HETE increases the expression of Natriuretic peptides B (NPPB). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 35 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Integrative "-Omics" analysis in primary human hepatocytes unravels persistent mechanisms of cyclosporine A-induced cholestasis. Chem Res Toxicol. 2016 Dec 19;29(12):2164-2174.
3 Development of a neural teratogenicity test based on human embryonic stem cells: response to retinoic acid exposure. Toxicol Sci. 2011 Dec;124(2):370-7.
4 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
7 Transcriptome and DNA methylome dynamics during triclosan-induced cardiomyocyte differentiation toxicity. Stem Cells Int. 2018 Oct 29;2018:8608327.
8 Global molecular effects of tocilizumab therapy in rheumatoid arthritis synovium. Arthritis Rheumatol. 2014 Jan;66(1):15-23.
9 Identification of biomarkers and outcomes of endocrine disruption in human ovarian cortex using In Vitro Models. Toxicology. 2023 Feb;485:153425. doi: 10.1016/j.tox.2023.153425. Epub 2023 Jan 5.
10 Cardiac toxicity from ethanol exposure in human-induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci. 2019 May 1;169(1):280-292.
11 Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. Br J Pharmacol. 2011 Apr;162(8):1743-56.
12 Cardiac toxicity of high-dose cyclophosphamide and melphalan in patients with multiple myeloma treated with tandem autologous hematopoietic stem cell transplantation. Int J Hematol. 2008 Sep;88(2):227-236. doi: 10.1007/s12185-008-0112-5. Epub 2008 Jun 12.
13 Cardiac toxicity of high-dose cyclophosphamide in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplantation. Int J Hematol. 2007 Jun;85(5):408-14. doi: 10.1532/IJH97.E0620.
14 Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haematol. 2000;104(4):158-63. doi: 10.1159/000046508.
15 Peroxisome proliferator activated receptor gamma (PPAR-gama) ligand pioglitazone regulated gene networks in term human primary trophoblast cells. Reprod Toxicol. 2018 Oct;81:99-107.
16 Docetaxel induced cardiotoxicity. Heart. 2001 Aug;86(2):219. doi: 10.1136/heart.86.2.219.
17 Low doses of BPF-induced hypertrophy in cardiomyocytes derived from human embryonic stem cells via disrupting the mitochondrial fission upon the interaction between ER and calcineurin A-DRP1 signaling pathway. Cell Biol Toxicol. 2022 Jun;38(3):409-426. doi: 10.1007/s10565-021-09615-y. Epub 2021 May 22.
18 Possible association of heart failure status with synthetic balance between aldosterone and dehydroepiandrosterone in human heart. Circulation. 2004 Sep 28;110(13):1787-93. doi: 10.1161/01.CIR.0000143072.36782.51. Epub 2004 Sep 13.
19 Effect of carvedilol on plasma adiponectin concentration in patients with chronic heart failure. Circ J. 2009 Jun;73(6):1067-73. doi: 10.1253/circj.cj-08-1026. Epub 2009 Apr 14.
20 A comparison of atenolol and nebivolol in isolated systolic hypertension. J Hypertens. 2008 Feb;26(2):351-6. doi: 10.1097/HJH.0b013e3282f283c9.
21 Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol. 2001 Apr;37(5):1228-33. doi: 10.1016/s0735-1097(01)01116-0.
22 Effects of valsartan on circulating brain natriuretic peptide and norepinephrine in symptomatic chronic heart failure: the Valsartan Heart Failure Trial (Val-HeFT). Circulation. 2002 Nov 5;106(19):2454-8. doi: 10.1161/01.cir.0000036747.68104.ac.
23 Impact of adenosine receptor signaling and metabolism on pathophysiology in patients with chronic heart failure. Hypertens Res. 2007 Sep;30(9):781-7. doi: 10.1291/hypres.30.781.
24 Chronic digoxin toxicity and significantly elevated BNP levels in the presence of mild heart failure. Am J Emerg Med. 2005 Jul;23(4):561-2. doi: 10.1016/j.ajem.2004.10.009.
25 The use of biochemical markers in cardiotoxicity monitoring in patients treated for leukemia. Neoplasma. 2005;52(5):430-4.
26 Efficacy of oral sildenafil in a beraprost-treated patient with severe pulmonary hypertension secondary to type I glycogen storage disease. Circ J. 2009 Oct;73(10):1965-8. doi: 10.1253/circj.cj-08-0181. Epub 2009 Jan 27.
27 Short-term effects of levosimendan and prostaglandin E1 on hemodynamic parameters and B-type natriuretic peptide levels in patients with decompensated chronic heart failure. Eur J Heart Fail. 2005 Dec;7(7):1156-63. doi: 10.1016/j.ejheart.2005.05.001. Epub 2005 Aug 5.
28 Comparison of the effects of telmisartan and olmesartan on home blood pressure, glucose, and lipid profiles in patients with hypertension, chronic heart failure, and metabolic syndrome. Hypertens Res. 2008 May;31(5):921-9. doi: 10.1291/hypres.31.921.
29 Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol. 2012 Apr 16;25(4):838-49.
30 CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Invest. 2016 Feb;126(2):639-52.
31 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
32 Therapy of ischemic cardiomyopathy with the immunomodulating agent pentoxifylline: results of a randomized study. Circulation. 2004 Feb 17;109(6):750-5. doi: 10.1161/01.CIR.0000112568.48837.60.
33 Transcriptomic?pathway?and?benchmark dose analysis of Bisphenol A, Bisphenol S, Bisphenol F, and 3,3',5,5'-Tetrabromobisphenol A in H9 human embryonic stem cells. Toxicol In Vitro. 2021 Apr;72:105097. doi: 10.1016/j.tiv.2021.105097. Epub 2021 Jan 18.
34 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
35 5-, 12- and 15-Hydroxyeicosatetraenoic acids induce cellular hypertrophy in the human ventricular cardiomyocyte, RL-14 cell line, through MAPK- and NF-B-dependent mechanism. Arch Toxicol. 2016 Feb;90(2):359-73.
36 Nesiritide: past, present, and future. Minerva Cardioangiol. 2005 Dec;53(6):509-22.