General Information of Drug Off-Target (DOT) (ID: OTZTS3PA)

DOT Name Dedicator of cytokinesis protein 2 (DOCK2)
Gene Name DOCK2
Related Disease
DOCK2 deficiency ( )
Acute myelogenous leukaemia ( )
Advanced cancer ( )
Alzheimer disease ( )
B-cell lymphoma ( )
B-cell neoplasm ( )
Familial prostate carcinoma ( )
Follicular lymphoma ( )
Haematological malignancy ( )
Leukemia ( )
Neoplasm ( )
Obesity ( )
Prostate cancer, hereditary, 1 ( )
Prostate carcinoma ( )
Rheumatoid arthritis ( )
Severe combined immunodeficiency ( )
Synovitis ( )
Bacterial infection ( )
Colorectal carcinoma ( )
Esophageal adenocarcinoma ( )
HIV infectious disease ( )
Post-traumatic stress disorder ( )
Small lymphocytic lymphoma ( )
UniProt ID
DOCK2_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2RQR; 2YIN; 3A98; 3B13; 6TGB; 6TGC
Pfam ID
PF06920 ; PF20422 ; PF20421 ; PF14429 ; PF16172 ; PF07653
Sequence
MAPWRKADKERHGVAIYNFQGSGAPQLSLQIGDVVRIQETCGDWYRGYLIKHKMLQGIFP
KSFIHIKEVTVEKRRNTENIIPAEIPLAQEVTTTLWEWGSIWKQLYVASKKERFLQVQSM
MYDLMEWRSQLLSGTLPKDELKELKQKVTSKIDYGNKILELDLIVRDEDGNILDPDNTSV
ISLFHAHEEATDKITERIKEEMSKDQPDYAMYSRISSSPTHSLYVFVRNFVCRIGEDAEL
FMSLYDPNKQTVISENYLVRWGSRGFPKEIEMLNNLKVVFTDLGNKDLNRDKIYLICQIV
RVGKMDLKDTGAKKCTQGLRRPFGVAVMDITDIIKGKAESDEEKQHFIPFHPVTAENDFL
HSLLGKVIASKGDSGGQGLWVTMKMLVGDIIQIRKDYPHLVDRTTVVARKLGFPEIIMPG
DVRNDIYITLLQGDFDKYNKTTQRNVEVIMCVCAEDGKTLPNAICVGAGDKPMNEYRSVV
YYQVKQPRWMETVKVAVPIEDMQRIHLRFMFRHRSSLESKDKGEKNFAMSYVKLMKEDGT
TLHDGFHDLVVLKGDSKKMEDASAYLTLPSYRHHVENKGATLSRSSSSVGGLSVSSRDVF
SISTLVCSTKLTQNVGLLGLLKWRMKPQLLQENLEKLKIVDGEEVVKFLQDTLDALFNIM
MEHSQSDEYDILVFDALIYIIGLIADRKFQHFNTVLEAYIQQHFSATLAYKKLMTVLKTY
LDTSSRGEQCEPILRTLKALEYVFKFIVRSRTLFSQLYEGKEQMEFEESMRRLFESINNL
MKSQYKTTILLQVAALKYIPSVLHDVEMVFDAKLLSQLLYEFYTCIPPVKLQKQKVQSMN
EIVQSNLFKKQECRDILLPVITKELKELLEQKDDMQHQVLERKYCVELLNSILEVLSYQD
AAFTYHHIQEIMVQLLRTVNRTVITMGRDHILISHFVACMTAILNQMGDQHYSFYIETFQ
TSSELVDFLMETFIMFKDLIGKNVYPGDWMAMSMVQNRVFLRAINKFAETMNQKFLEHTN
FEFQLWNNYFHLAVAFITQDSLQLEQFSHAKYNKILNKYGDMRRLIGFSIRDMWYKLGQN
KICFIPGMVGPILEMTLIPEAELRKATIPIFFDMMLCEYQRSGDFKKFENEIILKLDHEV
EGGRGDEQYMQLLESILMECAAEHPTIAKSVENFVNLVKGLLEKLLDYRGVMTDESKDNR
MSCTVNLLNFYKDNNREEMYIRYLYKLRDLHLDCDNYTEAAYTLLLHTWLLKWSDEQCAS
QVMQTGQQHPQTHRQLKETLYETIIGYFDKGKMWEEAISLCKELAEQYEMEIFDYELLSQ
NLIQQAKFYESIMKILRPKPDYFAVGYYGQGFPSFLRNKVFIYRGKEYERREDFQMQLMT
QFPNAEKMNTTSAPGDDVKNAPGQYIQCFTVQPVLDEHPRFKNKPVPDQIINFYKSNYVQ
RFHYSRPVRRGTVDPENEFASMWIERTSFVTAYKLPGILRWFEVVHMSQTTISPLENAIE
TMSTANEKILMMINQYQSDETLPINPLSMLLNGIVDPAVMGGFAKYEKAFFTEEYVRDHP
EDQDKLTHLKDLIAWQIPFLGAGIKIHEKRVSDNLRPFHDRMEECFKNLKMKVEKEYGVR
EMPDFDDRRVGRPRSMLRSYRQMSIISLASMNSDCSTPSKPTSESFDLELASPKTPRVEQ
EEPISPGSTLPEVKLRRSKKRTKRSSVVFADEKAAAESDLKRLSRKHEFMSDTNLSEHAA
IPLKASVLSQMSFASQSMPTIPALALSVAGIPGLDEANTSPRLSQTFLQLSDGDKKTLTR
KKVNQFFKTMLASKSAEEGKQIPDSLSTDL
Function
Involved in cytoskeletal rearrangements required for lymphocyte migration in response of chemokines. Activates RAC1 and RAC2, but not CDC42, by functioning as a guanine nucleotide exchange factor (GEF), which exchanges bound GDP for free GTP. May also participate in IL2 transcriptional activation via the activation of RAC2.
Tissue Specificity
Specifically expressed in hematopoietic cells. Highly expressed in peripheral blood leukocytes, and expressed at intermediate level in thymus and spleen. Expressed at very low level in the small intestine and colon.
KEGG Pathway
Chemokine sig.ling pathway (hsa04062 )
Reactome Pathway
Neutrophil degranulation (R-HSA-6798695 )
RHOA GTPase cycle (R-HSA-8980692 )
RAC1 GTPase cycle (R-HSA-9013149 )
RAC2 GTPase cycle (R-HSA-9013404 )
RHOG GTPase cycle (R-HSA-9013408 )
Factors involved in megakaryocyte development and platelet production (R-HSA-983231 )
Nef and signal transduction (R-HSA-164944 )

Molecular Interaction Atlas (MIA) of This DOT

23 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
DOCK2 deficiency DISP9CBE Definitive Autosomal recessive [1]
Acute myelogenous leukaemia DISCSPTN Strong Biomarker [2]
Advanced cancer DISAT1Z9 Strong Biomarker [3]
Alzheimer disease DISF8S70 Strong Biomarker [4]
B-cell lymphoma DISIH1YQ Strong Biomarker [5]
B-cell neoplasm DISVY326 Strong Biomarker [5]
Familial prostate carcinoma DISL9KNO Strong Biomarker [6]
Follicular lymphoma DISVEUR6 Strong Biomarker [5]
Haematological malignancy DISCDP7W Strong Biomarker [5]
Leukemia DISNAKFL Strong Biomarker [7]
Neoplasm DISZKGEW Strong Altered Expression [8]
Obesity DIS47Y1K Strong Biomarker [9]
Prostate cancer, hereditary, 1 DISE2P4L Strong Biomarker [6]
Prostate carcinoma DISMJPLE Strong Genetic Variation [6]
Rheumatoid arthritis DISTSB4J Strong Biomarker [10]
Severe combined immunodeficiency DIS6MF4Q Strong Biomarker [11]
Synovitis DISW2GPY Strong Biomarker [12]
Bacterial infection DIS5QJ9S moderate Biomarker [3]
Colorectal carcinoma DIS5PYL0 moderate Biomarker [8]
Esophageal adenocarcinoma DISODWFP moderate Biomarker [13]
HIV infectious disease DISO97HC moderate Biomarker [3]
Post-traumatic stress disorder DISHL1EY Limited Genetic Variation [14]
Small lymphocytic lymphoma DIS30POX Limited Biomarker [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
10 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [16]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [17]
Cisplatin DMRHGI9 Approved Cisplatin decreases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [18]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [19]
Calcitriol DM8ZVJ7 Approved Calcitriol decreases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [21]
SNDX-275 DMH7W9X Phase 3 SNDX-275 increases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [22]
(+)-JQ1 DM1CZSJ Phase 1 (+)-JQ1 decreases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [24]
Trichostatin A DM9C8NX Investigative Trichostatin A increases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [16]
Formaldehyde DM7Q6M0 Investigative Formaldehyde decreases the expression of Dedicator of cytokinesis protein 2 (DOCK2). [26]
Choline DM5D9YK Investigative Choline affects the expression of Dedicator of cytokinesis protein 2 (DOCK2). [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 Drug(s)
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Arsenic DMTL2Y1 Approved Arsenic affects the methylation of Dedicator of cytokinesis protein 2 (DOCK2). [20]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene increases the methylation of Dedicator of cytokinesis protein 2 (DOCK2). [23]
Bisphenol A DM2ZLD7 Investigative Bisphenol A decreases the methylation of Dedicator of cytokinesis protein 2 (DOCK2). [25]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 FLT3-ITD cooperates with Rac1 to modulate the sensitivity of leukemic cells to chemotherapeutic agents via regulation of DNA repair pathways.Haematologica. 2019 Dec;104(12):2418-2428. doi: 10.3324/haematol.2018.208843. Epub 2019 Apr 11.
3 Dock2 in the development of inflammation and cancer.Eur J Immunol. 2018 Jun;48(6):915-922. doi: 10.1002/eji.201747157. Epub 2018 Apr 11.
4 Dedicator of Cytokinesis 2 in Cell Signaling Regulation and Disease Development.J Cell Physiol. 2017 Aug;232(8):1931-1940. doi: 10.1002/jcp.25512. Epub 2017 Feb 28.
5 DOCK2 regulates cell proliferation through Rac and ERK activation in B cell lymphoma.Biochem Biophys Res Commun. 2010 Apr 23;395(1):111-5. doi: 10.1016/j.bbrc.2010.03.148. Epub 2010 Mar 27.
6 Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci.Nat Genet. 2018 Jul;50(7):928-936. doi: 10.1038/s41588-018-0142-8. Epub 2018 Jun 11.
7 DOCK2 associates with CrkL and regulates Rac1 in human leukemia cell lines.Blood. 2002 Dec 1;100(12):3968-74. doi: 10.1182/blood-2001-11-0032. Epub 2002 Jun 28.
8 Overexpression of dedicator of cytokinesis 2 correlates with good prognosis in colorectal cancer associated with more prominent CD8(+) lymphocytes infiltration: a colorectal cancer analysis.J Cell Biochem. 2018 Nov;119(11):8962-8970. doi: 10.1002/jcb.27151. Epub 2018 Aug 4.
9 DOCK2 deficiency mitigates HFD-induced obesity by reducing adipose tissue inflammation and increasing energy expenditure.J Lipid Res. 2017 Sep;58(9):1777-1784. doi: 10.1194/jlr.M073049. Epub 2017 Jul 17.
10 A noncanonical role for the engulfment gene ELMO1 in neutrophils that promotes inflammatory arthritis.Nat Immunol. 2019 Feb;20(2):141-151. doi: 10.1038/s41590-018-0293-x. Epub 2019 Jan 14.
11 DOCK family proteins: key players in immune surveillance mechanisms.Int Immunol. 2020 Jan 9;32(1):5-15. doi: 10.1093/intimm/dxz067.
12 Multivariate genome-wide association analysis identifies novel and relevant variants associated with anterior cruciate ligament rupture risk in the dog model.BMC Genet. 2018 Jun 26;19(1):39. doi: 10.1186/s12863-018-0626-7.
13 Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.Nat Genet. 2013 May;45(5):478-86. doi: 10.1038/ng.2591. Epub 2013 Mar 24.
14 Genomewide DNA methylation analysis in combat veterans reveals a novel locus for PTSD.Acta Psychiatr Scand. 2017 Nov;136(5):493-505. doi: 10.1111/acps.12778. Epub 2017 Aug 9.
15 Wnt5a induces ROR1 to recruit DOCK2 to activate Rac1/2 in chronic lymphocytic leukemia.Blood. 2018 Jul 12;132(2):170-178. doi: 10.1182/blood-2017-12-819383. Epub 2018 Apr 20.
16 From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Arch Toxicol. 2014 Jul;88(7):1451-68.
17 Evaluation of a human iPSC-derived BBB model for repeated dose toxicity testing with cyclosporine A as model compound. Toxicol In Vitro. 2021 Jun;73:105112. doi: 10.1016/j.tiv.2021.105112. Epub 2021 Feb 22.
18 Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol Lett. 2016 Sep 6;258:227-236.
19 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
20 Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci. 2015 Jan;143(1):97-106. doi: 10.1093/toxsci/kfu210. Epub 2014 Oct 10.
21 Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol. 2016 Nov;164:90-97.
22 A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Arch Toxicol. 2015 Sep;89(9):1599-618.
23 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
24 Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem. 2012 Dec 14;287(51):43137-55.
25 DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics. 2019 Oct 10;11(1):138. doi: 10.1186/s13148-019-0725-y.
26 Characterization of formaldehyde's genotoxic mode of action by gene expression analysis in TK6 cells. Arch Toxicol. 2013 Nov;87(11):1999-2012.
27 Lymphocyte gene expression in subjects fed a low-choline diet differs between those who develop organ dysfunction and those who do not. Am J Clin Nutr. 2007 Jul;86(1):230-9. doi: 10.1093/ajcn/86.1.230.