General Information of Drug Combination (ID: DC612YU)

Drug Combination Name
Epinephrine Tranexamic Acid
Indication
Disease Entry Status REF
Pain, Postoperative Phase 4 [1]
Component Drugs Epinephrine   DM3KJBC Tranexamic Acid   DMFI8A7
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Epinephrine
Disease Entry ICD 11 Status REF
Acute asthma CA23 Approved [2]
Allergy 4A80-4A85 Approved [3]
Anaphylaxis N.A. Approved [2]
Bronchiectasis CA24 Approved [2]
Bronchitis CA20 Approved [2]
Periodontitis DA0C Approved [2]
Pulmonary emphysema CA21.Z Approved [2]
Severe asthma CA23 Approved [2]
Asthma CA23 Investigative [2]
Epinephrine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Adrenergic receptor beta-1 (ADRB1) TTR6W5O ADRB1_HUMAN Agonist [7]
------------------------------------------------------------------------------------
Epinephrine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 3 (SLC22A3) DT6201N S22A3_HUMAN Substrate [8]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Epinephrine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [10]
Sulfotransferase 1A1 (SULT1A1) DEYWLRK ST1A1_HUMAN Metabolism [11]
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Metabolism [12]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [13]
Monoamine oxidase type A (MAO-A) DERE4TU AOFA_HUMAN Metabolism [14]
------------------------------------------------------------------------------------
Epinephrine Interacts with 33 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [15]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [16]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Increases Expression [17]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [17]
Carbonic anhydrase 2 (CA2) OTJRMUAG CAH2_HUMAN Increases Expression [18]
Integrin alpha-V (ITGAV) OTAM7JTR ITAV_HUMAN Increases Expression [18]
Cathepsin K (CTSK) OTT3YX5O CATK_HUMAN Increases Expression [18]
Renin (REN) OT52GZR2 RENI_HUMAN Increases Activity [19]
Insulin (INS) OTZ85PDU INS_HUMAN Decreases Expression [20]
Beta-2 adrenergic receptor (ADRB2) OTSDOX4Q ADRB2_HUMAN Increases Activity [21]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Decreases Cleavage [22]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [22]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Increases Expression [22]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [22]
Alpha-1D adrenergic receptor (ADRA1D) OTW2CD1O ADA1D_HUMAN Increases Activity [23]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [24]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Increases Activity [23]
Alpha-1B adrenergic receptor (ADRA1B) OTSAYAFD ADA1B_HUMAN Increases Activity [23]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [24]
Tumor necrosis factor ligand superfamily member 6 (FASLG) OTZARCHH TNFL6_HUMAN Increases Expression [24]
Hexokinase-2 (HK2) OTC0GCQO HXK2_HUMAN Increases Expression [22]
Ephrin type-A receptor 4 (EPHA4) OT3AMK0C EPHA4_HUMAN Increases Phosphorylation [25]
Hormone-sensitive lipase (LIPE) OTMMVJ8A LIPS_HUMAN Increases Activity [26]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [22]
P2X purinoceptor 7 (P2RX7) OTNJ9XPL P2RX7_HUMAN Decreases Activity [27]
Leptin (LEP) OT5Q7ODW LEP_HUMAN Increases ADR [28]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Response To Substance [29]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Sulfation [30]
Glutathione reductase, mitochondrial (GSR) OTM2TUYM GSHR_HUMAN Increases ADR [28]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [31]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases ADR [28]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [16]
Alpha-2A adrenergic receptor (ADRA2A) OTZFGOTP ADA2A_HUMAN Increases ADR [28]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 DOT(s)
Indication(s) of Tranexamic Acid
Disease Entry ICD 11 Status REF
Excessive bleeding GA30.02 Approved [4]
Menorrhagia GA20.50 Approved [5]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 2 [6]
Endometriosis GA10 Investigative [5]
Tranexamic Acid Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Plasminogen (PLG) TTP86E2 PLMN_HUMAN Inhibitor [32]
------------------------------------------------------------------------------------

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Knee Prosthesis DCUJ71Z N. A. Phase 1 [33]
------------------------------------------------------------------------------------

References

1 ClinicalTrials.gov (NCT01964781) The Effect of Topical Administration of Common Drugs on Postoperative Bleeding and Pain
2 Epinephrine FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 509).
4 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 6573).
5 Tranexamic acid FDA Label
6 Tranexamic Acid (TXA) and Corona Virus 2019 (COVID19) in Inpatients (TCInpatient)
7 Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G269-77.
8 Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006 Jun;50(8):941-52.
9 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
10 Steroid glucuronides: human circulatory levels and formation by LNCaP cells. J Steroid Biochem Mol Biol. 1991;40(4-6):593-8.
11 Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3'-phosphoadenosine 5'-phosphate. Biochem Biophys Res Commun. 2005 Sep 23;335(2):417-23.
12 Adrenal catecholamines and their metabolism in the vitamin A deficient rat. Ann Nutr Metab. 1983;27(3):220-7.
13 Different metabolism of norepinephrine and epinephrine by catechol-O-methyltransferase and monoamine oxidase in rats. J Pharmacol Exp Ther. 1994 Mar;268(3):1242-51.
14 Role of monoamine-oxidase-A-gene variation in the development of glioblastoma in males: a case control study. J Neurooncol. 2019 Nov;145(2):287-294.
15 Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol. 2001 Feb;59(2):393-402. doi: 10.1124/mol.59.2.393.
16 Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010 Dec;335(3):743-53. doi: 10.1124/jpet.110.170142. Epub 2010 Sep 21.
17 Epinephrine upregulates superoxide dismutase in human coronary artery endothelial cells. Free Radic Biol Med. 2001 Jan 15;30(2):148-53.
18 Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta. 2003 May 12;1640(2-3):137-42.
19 Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983 Dec 8;309(23):1414-9. doi: 10.1056/NEJM198312083092303.
20 A receptor mechanism for the inhibition of insulin release by epinephrine in man. J Clin Invest. 1967 Jan;46(1):86-94. doi: 10.1172/JCI105514.
21 Myocardial ischaemia and ventricular arrhthymias precipitated by physiological concentrations of adrenaline in patients with coronary artery disease. Br Heart J. 1992 May;67(5):419-20. doi: 10.1136/hrt.67.5.419-b.
22 Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023 Jan 5;369:110278. doi: 10.1016/j.cbi.2022.110278. Epub 2022 Nov 22.
23 Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc Res. 2004 Sep 1;63(4):662-72. doi: 10.1016/j.cardiores.2004.05.014.
24 Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc Res. 2000 Feb;45(3):788-94. doi: 10.1016/s0008-6363(99)00369-7.
25 The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets. 2012;23(8):617-25. doi: 10.3109/09537104.2011.645924. Epub 2012 Jan 24.
26 Hormone-sensitive lipase in human adipose tissue, isolated adipocytes, and cultured adipocytes. Pediatr Res. 1982 Dec;16(12):982-8. doi: 10.1203/00006450-198212000-00002.
27 Epidermal growth factor facilitates epinephrine inhibition of P2X7-receptor-mediated pore formation and apoptosis: a novel signaling network. Endocrinology. 2005 Jan;146(1):164-74. doi: 10.1210/en.2004-1026. Epub 2004 Sep 30.
28 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
29 Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro. Toxicol In Vitro. 2015 Feb;29(1):27-33. doi: 10.1016/j.tiv.2014.08.001. Epub 2014 Aug 27.
30 Enzymatic characterization and interspecies difference of phenol sulfotransferases, ST1A forms. Drug Metab Dispos. 2001 Mar;29(3):274-81.
31 Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One. 2019 Feb 12;14(2):e0211903. doi: 10.1371/journal.pone.0211903. eCollection 2019.
32 Evaluation of aprotinin and tranexamic acid in different in vitro and in vivo models of fibrinolysis, coagulation and thrombus formation. J Thromb Haemost. 2007 Oct;5(10):2113-8.
33 ClinicalTrials.gov (NCT02319915) Evaluation of the Pharmacokinetic Profile of Tranexamic Acid, After Injection in a Knee Neo-articulation.