General Information of Drug Combination (ID: DC8FV2P)

Drug Combination Name
Lidocaine Cefazolin
Indication
Disease Entry Status REF
Vitreoretinal Surgery Phase 4 [1]
Component Drugs Lidocaine   DML4ZOT Cefazolin   DMPDYFR
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Lidocaine
Disease Entry ICD 11 Status REF
Anaesthesia 9A78.6 Approved [2]
Carpal tunnel syndrome N.A. Approved [3]
Interstitial cystitis GC00.3 Approved [3]
Long QT syndrome BC65.0 Approved [3]
Pain MG30-MG3Z Approved [3]
Pediculus capitis infestation 1G00.0 Approved [3]
Periodontitis DA0C Approved [3]
Postherpetic neuralgia 1E91.5 Approved [3]
Pthirus pubis infestation N.A. Approved [3]
Dysmenorrhea GA34.3 Phase 2 [4]
Chronic pain MG30 Investigative [3]
Neuralgia N.A. Investigative [3]
Premature ejaculation HA03.0Z Investigative [3]
Pruritus EC90 Investigative [3]
Lidocaine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Voltage-gated sodium channel alpha Nav1.9 (SCN11A) TTN9VTF SCNBA_HUMAN Blocker [8]
------------------------------------------------------------------------------------
Lidocaine Interacts with 1 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [9]
------------------------------------------------------------------------------------
Lidocaine Interacts with 10 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [10]
Cytochrome P450 1A2 (CYP1A2) DEJGDUW CP1A2_HUMAN Metabolism [11]
Cytochrome P450 2A6 (CYP2A6) DEJVYAZ CP2A6_HUMAN Metabolism [12]
Cytochrome P450 2D6 (CYP2D6) DECB0K3 CP2D6_HUMAN Metabolism [13]
Cytochrome P450 3A5 (CYP3A5) DEIBDNY CP3A5_HUMAN Metabolism [14]
Cytochrome P450 3A7 (CYP3A7) DERD86B CP3A7_HUMAN Metabolism [14]
Cytochrome P450 2C18 (CYP2C18) DEZMWRE CP2CI_HUMAN Metabolism [12]
Cytochrome P450 2C8 (CYP2C8) DES5XRU CP2C8_HUMAN Metabolism [12]
Cytochrome P450 2C9 (CYP2C9) DE5IED8 CP2C9_HUMAN Metabolism [12]
Cytochrome P450 2B6 (CYP2B6) DEPKLMQ CP2B6_HUMAN Metabolism [15]
------------------------------------------------------------------------------------
⏷ Show the Full List of 10 DME(s)
Lidocaine Interacts with 23 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Decreases Ethylation [16]
Cytochrome P450 3A5 (CYP3A5) OTSXFBXB CP3A5_HUMAN Decreases Methylation [17]
Alpha-1-acid glycoprotein 1 (ORM1) OTZKSBRE A1AG1_HUMAN Affects Binding [18]
C-reactive protein (CRP) OT0RFT8F CRP_HUMAN Increases ADR [19]
Glutathione hydrolase 1 proenzyme (GGT1) OTYDA1Z7 GGT1_HUMAN Increases ADR [19]
Alkaline phosphatase, placental type (ALPP) OTZU4G9W PPB1_HUMAN Increases ADR [19]
Estrogen receptor (ESR1) OTKLU61J ESR1_HUMAN Increases Expression [20]
Nuclear receptor subfamily 1 group I member 2 (NR1I2) OTC5U0N5 NR1I2_HUMAN Increases Activity [21]
Kininogen-1 (KNG1) OT4X9LDE KNG1_HUMAN Decreases Activity [22]
Beta-nerve growth factor (NGF) OTOLABJT NGF_HUMAN Decreases Expression [7]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Decreases Expression [23]
Neurofilament medium polypeptide (NEFM) OT8VCBNF NFM_HUMAN Decreases Expression [7]
Alpha-1-acid glycoprotein 2 (ORM2) OTRJGZP8 A1AG2_HUMAN Affects Binding [18]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Decreases Expression [24]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Decreases Expression [24]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Decreases Activity [25]
Neuronatin (NNAT) OTNRLO7G NNAT_HUMAN Decreases Expression [7]
Transient receptor potential cation channel subfamily V member 1 (TRPV1) OTHHDR03 TRPV1_HUMAN Increases Activity [26]
Sulfotransferase 1A1 (SULT1A1) OT0K7JIE ST1A1_HUMAN Increases Sulfation [27]
Histamine H1 receptor (HRH1) OT8F9FV6 HRH1_HUMAN Affects Binding [28]
Endoplasmic reticulum chaperone BiP (HSPA5) OTFUIRAO BIP_HUMAN Increases ADR [19]
Sodium channel protein type 5 subunit alpha (SCN5A) OTGYZWR6 SCN5A_HUMAN Affects Response To Substance [29]
Sulfotransferase 1B1 (SULT1B1) OTH0RQYA ST1B1_HUMAN Increases Sulfation [27]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 DOT(s)
Indication(s) of Cefazolin
Disease Entry ICD 11 Status REF
Bacteremia 1A73 Approved [5]
Bacterial infection 1A00-1C4Z Approved [6]
Cholangitis N.A. Approved [5]
Staphylococcal pneumonia N.A. Approved [5]
Cefazolin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Bacterial Penicillin binding protein (Bact PBP) TTJP4SM NOUNIPROTAC Binder [30]
------------------------------------------------------------------------------------
Cefazolin Interacts with 5 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic anion transporting polypeptide 1B1 (SLCO1B1) DT3D8F0 SO1B1_HUMAN Substrate [31]
Multidrug resistance-associated protein 4 (ABCC4) DTCSGPB MRP4_HUMAN Substrate [32]
Peptide transporter 1 (SLC15A1) DT9G7XN S15A1_HUMAN Substrate [33]
Organic anion transporter 1 (SLC22A6) DTQ23VB S22A6_HUMAN Substrate [34]
Organic anion transporter 3 (SLC22A8) DTVP67E S22A8_HUMAN Substrate [34]
------------------------------------------------------------------------------------
Cefazolin Interacts with 4 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Metabolism [35]
Beta-lactamase (blaB) DEP0IWS A0A378EHS6_KLEPR Metabolism [36]
Beta-lactamase (blaB) DE7IH52 AMPC_CITFR Metabolism [37]
Beta-lactamase (blaB) DENJ2SQ BLAB_BACFG Metabolism [38]
------------------------------------------------------------------------------------

References

1 ClinicalTrials.gov (NCT02324166) Cefazolin-Lidocaine Combination Solution to Reduce Antibiotic Pain
2 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2623).
3 Lidocaine FDA Label
4 ClinicalTrials.gov (NCT00651313) Efficacy and Safety Study of Lidocaine Vaginal Gel for Recurrent Dysmenorrhea (Painful Periods). U.S. National Institutes of Health.
5 Cefazolin FDA Label
6 FDA Approved Drug Products from FDA Official Website. 2009. Application Number: (ANDA) 065244.
7 Lidocaine prevents breast cancer growth by targeting neuronatin to inhibit nerve fibers formation. J Toxicol Sci. 2021;46(7):329-339. doi: 10.2131/jts.46.329.
8 Mechanisms of analgesia of intravenous lidocaine. Rev Bras Anestesiol. 2008 May-Jun;58(3):280-6.
9 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
10 Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese Han volunteers living at low altitude and in native Han and Tibetan Chinese volunteers living at high altitude. Pharmacology. 2016;97(3-4):107-13.
11 Synthetic and natural compounds that interact with human cytochrome P450 1A2 and implications in drug development. Curr Med Chem. 2009;16(31):4066-218.
12 Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002 Feb-May;34(1-2):83-448.
13 Involvement of CYP1A2 and CYP3A4 in lidocaine N-deethylation and 3-hydroxylation in humans. Drug Metab Dispos. 2000 Aug;28(8):959-65.
14 Drug Interactions Flockhart Table
15 Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016 Sep;6(5):413-425.
16 The effect of mild and moderate hepatic impairment on the pharmacokinetics of valdecoxib, a selective COX-2 inhibitor. Eur J Clin Pharmacol. 2005 Jun;61(4):247-56.
17 Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos. 2004 Dec;32(12):1434-45. doi: 10.1124/dmd.104.001313. Epub 2004 Sep 21.
18 Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996 Oct;6(5):403-15. doi: 10.1097/00008571-199610000-00004.
19 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
20 Sensitivity of human dental pulp cells to eighteen chemical agents used for endodontic treatments in dentistry. Odontology. 2013 Jan;101(1):43-51.
21 Screening of a chemical library reveals novel PXR-activating pharmacologic compounds. Toxicol Lett. 2015 Jan 5;232(1):193-202. doi: 10.1016/j.toxlet.2014.10.009. Epub 2014 Oct 16.
22 Effects of capsaicin, bradykinin and prostaglandin E2 in the human skin. Br J Dermatol. 1992 Feb;126(2):111-7. doi: 10.1111/j.1365-2133.1992.tb07806.x.
23 [Influence of lidocaine on systemic inflammation in perioperative patients undergoing cardiopulmonary bypass]. Beijing Da Xue Xue Bao Yi Xue Ban. 2005 Dec 18;37(6):622-4.
24 Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am. 2010 Mar;92(3):609-18. doi: 10.2106/JBJS.H.01847.
25 Refining the human iPSC-cardiomyocyte arrhythmic risk assessment model. Toxicol Sci. 2013 Dec;136(2):581-94. doi: 10.1093/toxsci/kft205. Epub 2013 Sep 19.
26 The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest. 2008 Feb;118(2):763-76. doi: 10.1172/JCI32751.
27 Studies on sulfation of synthesized metabolites from the local anesthetics ropivacaine and lidocaine using human cloned sulfotransferases. Drug Metab Dispos. 1999 Sep;27(9):1057-63.
28 H(1)R mediates local anesthetic-induced vascular permeability in angioedema. Toxicol Appl Pharmacol. 2020 Apr 1;392:114921. doi: 10.1016/j.taap.2020.114921. Epub 2020 Feb 12.
29 Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel. Circ Res. 2008 Aug 15;103(4):396-404. doi: 10.1161/CIRCRESAHA.108.172619. Epub 2008 Jul 3.
30 Bacteriological characteristics of Staphylococcus aureus isolates from humans and bulk milk. J Dairy Sci. 2008 Feb;91(2):564-9.
31 Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev. 2011 Mar;63(1):157-81.
32 Oral availability of cefadroxil depends on ABCC3 and ABCC4. Drug Metab Dispos. 2012 Mar;40(3):515-21.
33 Three-dimensional quantitative structure-activity relationship analyses of beta-lactam antibiotics and tripeptides as substrates of the mammalian H+/peptide cotransporter PEPT1. J Med Chem. 2005 Jun 30;48(13):4410-9.
34 Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res. 2004 Jan;21(1):61-7.
35 Cefazolin administration and 2-methyl-1,3,4-thiadiazole-5-thiol in human tissue: possible relationship to hypoprothrombinemia. Drug Metab Dispos. 2002 Oct;30(10):1123-8.
36 Analysis of the drug-resistant characteristics of Klebsiella pneumoniae isolated from the respiratory tract and CTX-M ESBL genes. Genet Mol Res. 2015 Oct 5;14(4):12043-8.
37 Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. J Microbiol Immunol Infect. 2018 Aug;51(4):565-572.
38 Prevalence of antimicrobial resistance genes in Bacteroides spp. and Prevotella spp. Dutch clinical isolates. Clin Microbiol Infect. 2019 Sep;25(9):1156.e9-1156.e13.