General Information of Drug Combination (ID: DC8Q1XX)

Drug Combination Name
Epinephrine Ginsenoside Rb1
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Epinephrine   DM3KJBC Ginsenoside Rb1   DMF70AB
Small molecular drug N.A.
2D MOL 2D MOL
3D MOL 3D MOL is unavailable
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 7.53
Bliss Independence Score: 7.53
Loewe Additivity Score: 8.58
LHighest Single Agent (HSA) Score: 8.63

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Epinephrine
Disease Entry ICD 11 Status REF
Acute asthma CA23 Approved [2]
Allergy 4A80-4A85 Approved [3]
Anaphylaxis N.A. Approved [2]
Bronchiectasis CA24 Approved [2]
Bronchitis CA20 Approved [2]
Periodontitis DA0C Approved [2]
Pulmonary emphysema CA21.Z Approved [2]
Severe asthma CA23 Approved [2]
Asthma CA23 Investigative [2]
Epinephrine Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Adrenergic receptor beta-1 (ADRB1) TTR6W5O ADRB1_HUMAN Agonist [4]
------------------------------------------------------------------------------------
Epinephrine Interacts with 2 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Organic cation transporter 3 (SLC22A3) DT6201N S22A3_HUMAN Substrate [5]
Organic cation transporter 1 (SLC22A1) DTT79CX S22A1_HUMAN Substrate [6]
------------------------------------------------------------------------------------
Epinephrine Interacts with 5 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 1A1 (UGT1A1) DEYGVN4 UD11_HUMAN Metabolism [7]
Sulfotransferase 1A1 (SULT1A1) DEYWLRK ST1A1_HUMAN Metabolism [8]
Thiopurine methyltransferase (TPMT) DEFQ8VO TPMT_HUMAN Metabolism [9]
Catechol O-methyltransferase (COMT) DEV3T4A COMT_HUMAN Metabolism [10]
Monoamine oxidase type A (MAO-A) DERE4TU AOFA_HUMAN Metabolism [11]
------------------------------------------------------------------------------------
Epinephrine Interacts with 33 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Catechol O-methyltransferase (COMT) OTPWKTQG COMT_HUMAN Increases Methylation [12]
Solute carrier family 22 member 3 (SLC22A3) OTQYGVXX S22A3_HUMAN Increases Uptake [13]
Superoxide dismutase (SOD1) OT39TA1L SODC_HUMAN Increases Expression [14]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Increases Expression [14]
Carbonic anhydrase 2 (CA2) OTJRMUAG CAH2_HUMAN Increases Expression [15]
Integrin alpha-V (ITGAV) OTAM7JTR ITAV_HUMAN Increases Expression [15]
Cathepsin K (CTSK) OTT3YX5O CATK_HUMAN Increases Expression [15]
Renin (REN) OT52GZR2 RENI_HUMAN Increases Activity [16]
Insulin (INS) OTZ85PDU INS_HUMAN Decreases Expression [17]
Beta-2 adrenergic receptor (ADRB2) OTSDOX4Q ADRB2_HUMAN Increases Activity [18]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Decreases Cleavage [19]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [19]
Proliferating cell nuclear antigen (PCNA) OTHZ1RIA PCNA_HUMAN Increases Expression [19]
Pyruvate kinase PKM (PKM) OTLHHMC2 KPYM_HUMAN Increases Expression [19]
Alpha-1D adrenergic receptor (ADRA1D) OTW2CD1O ADA1D_HUMAN Increases Activity [20]
Tumor necrosis factor receptor superfamily member 6 (FAS) OTP9XG86 TNR6_HUMAN Increases Expression [21]
Alpha-1A adrenergic receptor (ADRA1A) OTUIWCL5 ADA1A_HUMAN Increases Activity [20]
Alpha-1B adrenergic receptor (ADRA1B) OTSAYAFD ADA1B_HUMAN Increases Activity [20]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [21]
Tumor necrosis factor ligand superfamily member 6 (FASLG) OTZARCHH TNFL6_HUMAN Increases Expression [21]
Hexokinase-2 (HK2) OTC0GCQO HXK2_HUMAN Increases Expression [19]
Ephrin type-A receptor 4 (EPHA4) OT3AMK0C EPHA4_HUMAN Increases Phosphorylation [22]
Hormone-sensitive lipase (LIPE) OTMMVJ8A LIPS_HUMAN Increases Activity [23]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [19]
P2X purinoceptor 7 (P2RX7) OTNJ9XPL P2RX7_HUMAN Decreases Activity [24]
Leptin (LEP) OT5Q7ODW LEP_HUMAN Increases ADR [25]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Response To Substance [26]
Sulfotransferase 1A3 (SULT1A4) OTHJ8WWV ST1A3_HUMAN Increases Sulfation [27]
Glutathione reductase, mitochondrial (GSR) OTM2TUYM GSHR_HUMAN Increases ADR [25]
Neuron-specific vesicular protein calcyon (CALY) OTQ7EMPU CALY_HUMAN Decreases Secretion [28]
Interleukin-8 (CXCL8) OTS7T5VH IL8_HUMAN Increases ADR [25]
Equilibrative nucleoside transporter 4 (SLC29A4) OTWTZXMX S29A4_HUMAN Increases Uptake [13]
Alpha-2A adrenergic receptor (ADRA2A) OTZFGOTP ADA2A_HUMAN Increases ADR [25]
------------------------------------------------------------------------------------
⏷ Show the Full List of 33 DOT(s)
Ginsenoside Rb1 Interacts with 23 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Beta-glucosidase (bglA) DEUO7V8 A0A509DD13_9STRE Metabolism [29]
Beta-glucosidase (bglA) DE4LKZ9 A0A3D1ZWL4_9BIFI Metabolism [29]
Beta-glucosidase (bglA) DEM6GYO A0A351PC96_9FIRM Metabolism [30], [29]
Beta-glucosidase (bglA) DE9N4OU C6WCL5_ACTMD Metabolism [31]
Beta-glucosidase (bglA) DERPJZ6 A0A4Q4LS82_BIFAN Metabolism [32]
Beta-glucosidase (bglA) DEVLXCG R7LVY8_9FUSO Metabolism [29]
Beta-glucosidase (bglA) DEUQTKA A0A249DCH3_LACRH Metabolism [32]
Beta-glucosidase (bglA) DEXRUS1 A0A267WL33_9BIFI Metabolism [33]
Beta-glucosidase (bglA) DERX7ML A0A3B8TKP6_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DEOHI3U A0A0P0FEZ9_BACT4 Metabolism [33]
Beta-glucosidase (bglA) DE46IH1 A0A1T4QCU7_9PROT Metabolism [34]
Beta-glucosidase (bglA) DEE8WXK A0A076JJU4_BIFAD Metabolism [33]
Beta-glucosidase (bglA) DECBSVP A0A126SWK8_9BIFI Metabolism [33]
Beta-glucosidase (bglA) DEAVLU4 BGLFU_BIFBR Metabolism [33]
Beta-glucosidase (bglA) DEPBQES BGLS_BUTFI Metabolism [33]
Beta-glucosidase (bglA) DEGVUWH A0A174JG46_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DEE8RS0 A0A174GPV4_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DEC0M8H A0A174ZK85_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DE2OMS0 A0A173UNF6_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DEPUNVR A0A395V8H8_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DEX7SAW A0A3R6A2W5_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DEE3I1P A0A412BAD0_9FIRM Metabolism [33]
Beta-glucosidase (bglA) DEASJG5 A5ZMW4_9FIRM Metabolism [33]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 DME(s)
Ginsenoside Rb1 Interacts with 7 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Progesterone receptor (PGR) OT0FZ3QE PRGR_HUMAN Increases Expression [35]
Heme oxygenase 1 (HMOX1) OTC1W6UX HMOX1_HUMAN Increases Expression [36]
Potassium voltage-gated channel subfamily E member 1 (KCNE1) OTZNQUW9 KCNE1_HUMAN Increases Expression [37]
RAC-alpha serine/threonine-protein kinase (AKT1) OT8H2YY7 AKT1_HUMAN Increases Phosphorylation [36]
Potassium voltage-gated channel subfamily H member 2 (KCNH2) OTZX881H KCNH2_HUMAN Affects Activity [38]
Sequestosome-1 (SQSTM1) OTGY5D5J SQSTM_HUMAN Decreases Expression [39]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Expression [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 7 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Epinephrine FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 509).
4 Adrenergic activation of electrogenic K+ secretion in guinea pig distal colonic epithelium: involvement of beta1- and beta2-adrenergic receptors. Am J Physiol Gastrointest Liver Physiol. 2009 Aug;297(2):G269-77.
5 Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology. 2006 Jun;50(8):941-52.
6 Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions. Pharm Res. 2013 Apr;30(4):996-1007.
7 Steroid glucuronides: human circulatory levels and formation by LNCaP cells. J Steroid Biochem Mol Biol. 1991;40(4-6):593-8.
8 Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3'-phosphoadenosine 5'-phosphate. Biochem Biophys Res Commun. 2005 Sep 23;335(2):417-23.
9 Adrenal catecholamines and their metabolism in the vitamin A deficient rat. Ann Nutr Metab. 1983;27(3):220-7.
10 Different metabolism of norepinephrine and epinephrine by catechol-O-methyltransferase and monoamine oxidase in rats. J Pharmacol Exp Ther. 1994 Mar;268(3):1242-51.
11 Role of monoamine-oxidase-A-gene variation in the development of glioblastoma in males: a case control study. J Neurooncol. 2019 Nov;145(2):287-294.
12 Molecular mechanisms controlling the rate and specificity of catechol O-methylation by human soluble catechol O-methyltransferase. Mol Pharmacol. 2001 Feb;59(2):393-402. doi: 10.1124/mol.59.2.393.
13 Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3. J Pharmacol Exp Ther. 2010 Dec;335(3):743-53. doi: 10.1124/jpet.110.170142. Epub 2010 Sep 21.
14 Epinephrine upregulates superoxide dismutase in human coronary artery endothelial cells. Free Radic Biol Med. 2001 Jan 15;30(2):148-53.
15 Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim Biophys Acta. 2003 May 12;1640(2-3):137-42.
16 Hypokalemia from beta2-receptor stimulation by circulating epinephrine. N Engl J Med. 1983 Dec 8;309(23):1414-9. doi: 10.1056/NEJM198312083092303.
17 A receptor mechanism for the inhibition of insulin release by epinephrine in man. J Clin Invest. 1967 Jan;46(1):86-94. doi: 10.1172/JCI105514.
18 Myocardial ischaemia and ventricular arrhthymias precipitated by physiological concentrations of adrenaline in patients with coronary artery disease. Br Heart J. 1992 May;67(5):419-20. doi: 10.1136/hrt.67.5.419-b.
19 Epinephrine facilitates the growth of T cell lymphoma by altering cell proliferation, apoptosis, and glucose metabolism. Chem Biol Interact. 2023 Jan 5;369:110278. doi: 10.1016/j.cbi.2022.110278. Epub 2022 Nov 22.
20 Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc Res. 2004 Sep 1;63(4):662-72. doi: 10.1016/j.cardiores.2004.05.014.
21 Carvedilol prevents epinephrine-induced apoptosis in human coronary artery endothelial cells: modulation of Fas/Fas ligand and caspase-3 pathway. Cardiovasc Res. 2000 Feb;45(3):788-94. doi: 10.1016/s0008-6363(99)00369-7.
22 The platelet P2Y12 receptor contributes to granule secretion through Ephrin A4 receptor. Platelets. 2012;23(8):617-25. doi: 10.3109/09537104.2011.645924. Epub 2012 Jan 24.
23 Hormone-sensitive lipase in human adipose tissue, isolated adipocytes, and cultured adipocytes. Pediatr Res. 1982 Dec;16(12):982-8. doi: 10.1203/00006450-198212000-00002.
24 Epidermal growth factor facilitates epinephrine inhibition of P2X7-receptor-mediated pore formation and apoptosis: a novel signaling network. Endocrinology. 2005 Jan;146(1):164-74. doi: 10.1210/en.2004-1026. Epub 2004 Sep 30.
25 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
26 Evaluation of cytogenetic and DNA damage in human lymphocytes treated with adrenaline in vitro. Toxicol In Vitro. 2015 Feb;29(1):27-33. doi: 10.1016/j.tiv.2014.08.001. Epub 2014 Aug 27.
27 Enzymatic characterization and interspecies difference of phenol sulfotransferases, ST1A forms. Drug Metab Dispos. 2001 Mar;29(3):274-81.
28 Increased arterial pressure in mice with overexpression of the ADHD candidate gene calcyon in forebrain. PLoS One. 2019 Feb 12;14(2):e0211903. doi: 10.1371/journal.pone.0211903. eCollection 2019.
29 Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull. 2000 Dec;23(12):1481-5.
30 Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol. 1998 Oct;50(10):1155-60.
31 Characterization of the ginsenoside-transforming recombinant beta-glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Appl Microbiol Biotechnol. 2013 Jan;97(2):649-59.
32 Fermentation of protopanaxadiol type ginsenosides (PD) with probiotic Bifidobacterium lactis and Lactobacillus rhamnosus. Appl Microbiol Biotechnol. 2017 Jul;101(13):5427-5437.
33 Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res. 2013 Mar;69(1):21-31.
34 Genus Enhydrobacter Staley et al. 1987 should be recognized as a member of the family Rhodospirillaceae within the class Alphaproteobacteria. Microbiol Immunol. 2012 Jan;56(1):21-6.
35 Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull. 2005 Oct;28(10):1903-8. doi: 10.1248/bpb.28.1903.
36 Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol Appl Pharmacol. 2010 Jan 1;242(1):18-28. doi: 10.1016/j.taap.2009.09.009. Epub 2009 Sep 23.
37 Ginsenosides may enhance the functionality of human embryonic stem cell-derived cardiomyocytes in vitro. Reprod Sci. 2014 Oct;21(10):1312-8. doi: 10.1177/1933719114525269. Epub 2014 Mar 10.
38 Modulating effect of ginseng saponins on heterologously expressed HERG currents in Xenopus oocytes. Acta Pharmacol Sin. 2005 May;26(5):551-8. doi: 10.1111/j.1745-7254.2005.00116.x.
39 Ginsenoside Rb1 alleviates liver injury induced by 3-chloro-1,2-propanediol by stimulating autophagic flux. J Food Sci. 2021 Dec;86(12):5503-5515. doi: 10.1111/1750-3841.15968. Epub 2021 Nov 23.
40 Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol. 2012 Aug 20;25(8):1574-80. doi: 10.1021/tx2005025. Epub 2012 Aug 9.