General Information of Drug Combination (ID: DCR3RWS)

Drug Combination Name
Epirubicin Isoniazid
Indication
Disease Entry Status REF
Clear cell renal cell carcinoma Investigative [1]
Component Drugs Epirubicin   DMPDW6T Isoniazid   DM5JVS3
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: 786-0
Zero Interaction Potency (ZIP) Score: 0.85
Bliss Independence Score: 5.43
Loewe Additivity Score: 3.08
LHighest Single Agent (HSA) Score: 3.84

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Epirubicin
Disease Entry ICD 11 Status REF
Solid tumour/cancer 2A00-2F9Z Approved [2]
Epirubicin Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
DNA topoisomerase II (TOP2) TT0IHXV TOP2A_HUMAN; TOP2B_HUMAN Modulator [5]
------------------------------------------------------------------------------------
Epirubicin Interacts with 4 DTP Molecule(s)
DTP Name DTP ID UniProt ID Mode of Action REF
Multidrug resistance-associated protein 1 (ABCC1) DTSYQGK MRP1_HUMAN Substrate [6]
Multidrug resistance-associated protein 2 (ABCC2) DTFI42L MRP2_HUMAN Substrate [7]
P-glycoprotein 1 (ABCB1) DTUGYRD MDR1_HUMAN Substrate [7]
Breast cancer resistance protein (ABCG2) DTI7UX6 ABCG2_HUMAN Substrate [7]
------------------------------------------------------------------------------------
Epirubicin Interacts with 1 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
UDP-glucuronosyltransferase 2B7 (UGT2B7) DEB3CV1 UD2B7_HUMAN Metabolism [8]
------------------------------------------------------------------------------------
Epirubicin Interacts with 30 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
ATP-binding cassette sub-family C member 2 (ABCC2) OTJSIGV5 MRP2_HUMAN Increases Expression [9]
Multidrug resistance-associated protein 1 (ABCC1) OTGUN89S MRP1_HUMAN Increases Expression [9]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [9]
Broad substrate specificity ATP-binding cassette transporter ABCG2 (ABCG2) OTW8V2V1 ABCG2_HUMAN Decreases Response To Substance [10]
Natriuretic peptides A (NPPA) OTMQNTNX ANF_HUMAN Increases Expression [11]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [12]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Expression [13]
Interleukin-6 receptor subunit alpha (IL6R) OTCQL07Z IL6RA_HUMAN Increases Expression [14]
Retinoic acid receptor alpha (RARA) OT192V9V RARA_HUMAN Affects Mutagenesis [15]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Increases Expression [9]
Ribosomal protein S6 kinase beta-1 (RPS6KB1) OTAELNGX KS6B1_HUMAN Increases Phosphorylation [16]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Phosphorylation [16]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Phosphorylation [16]
Protein PML (PML) OT6SM2GD PML_HUMAN Affects Mutagenesis [15]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Expression [17]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Expression [12]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [12]
Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) OTHBQVD5 4EBP1_HUMAN Increases Phosphorylation [16]
FK506-binding protein-like (FKBPL) OTR9ND6K FKBPL_HUMAN Increases Expression [17]
Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A) OT2D9DOV TNR1A_HUMAN Increases ADR [18]
MARVEL domain-containing protein 1 (MARVELD1) OT5CPOJE MALD1_HUMAN Increases Response To Substance [19]
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) OT9AGAIJ LHPP_HUMAN Increases ADR [18]
Alpha-protein kinase 1 (ALPK1) OTBW6SGD ALPK1_HUMAN Increases ADR [20]
Baculoviral IAP repeat-containing protein 6 (BIRC6) OTCQJAB0 BIRC6_HUMAN Decreases Response To Substance [21]
Baculoviral IAP repeat-containing protein 5 (BIRC5) OTILXZYL BIRC5_HUMAN Decreases Response To Substance [22]
Superoxide dismutase , mitochondrial (SOD2) OTIWXGZ9 SODM_HUMAN Affects Response To Substance [23]
Protein S100-P (S100P) OTJCXNJG S100P_HUMAN Increases Response To Substance [24]
Pleckstrin homology-like domain family A member 2 (PHLDA2) OTMV9DPP PHLA2_HUMAN Increases Response To Substance [25]
Little elongation complex subunit 1 (ICE1) OTOXTBUH ICE1_HUMAN Increases ADR [18]
Microcephalin (MCPH1) OTYT3TT5 MCPH1_HUMAN Increases ADR [20]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 DOT(s)
Indication(s) of Isoniazid
Disease Entry ICD 11 Status REF
Latent tuberculosis infection N.A. Approved [3]
Pulmonary tuberculosis 1B10.Z Approved [3]
Tuberculosis 1B10-1B1Z Approved [4]
Isoniazid Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Bacterial Fatty acid synthetase I (Bact inhA) TTVTX4N INHA_MYCTU Inhibitor [27]
------------------------------------------------------------------------------------
Isoniazid Interacts with 3 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 2E1 (CYP2E1) DEVDYN7 CP2E1_HUMAN Metabolism [28]
Catalase-peroxidase (katG) DEAGY5M KATG_SYNE7 Metabolism [29]
Arylamine N-acetyltransferase (NAT) DEXCQTM A0A3P8LE58_TSUPA Metabolism [30]
------------------------------------------------------------------------------------
Isoniazid Interacts with 59 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Alanine aminotransferase 1 (GPT) OTOXOA0Q ALAT1_HUMAN Increases Expression [31]
N-alpha-acetyltransferase 20 (NAA20) OTJB0VA6 NAA20_HUMAN Increases ADR [32]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [33]
Nuclear protein 1 (NUPR1) OT4FU8C0 NUPR1_HUMAN Increases Expression [34]
Inhibin beta E chain (INHBE) OTOI2NYG INHBE_HUMAN Increases Expression [34]
Protein DEPP1 (DEPP1) OTB36PHJ DEPP1_HUMAN Increases Expression [34]
Aldo-keto reductase family 1 member B10 (AKR1B10) OTOA4HTH AK1BA_HUMAN Increases Expression [26]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Secretion [26]
Interferon gamma (IFNG) OTXG9JM7 IFNG_HUMAN Increases Secretion [26]
C-X-C motif chemokine 10 (CXCL10) OTTLQ6S0 CXL10_HUMAN Increases Secretion [26]
Interleukin-6 (IL6) OTUOSCCU IL6_HUMAN Increases Secretion [26]
NAD(P)H dehydrogenase 1 (NQO1) OTZGGIVK NQO1_HUMAN Increases Expression [26]
Interleukin-10 (IL10) OTIRFRXC IL10_HUMAN Increases Secretion [26]
Interleukin-12 subunit alpha (IL12A) OTDQT8GI IL12A_HUMAN Increases Secretion [26]
Interleukin-12 subunit beta (IL12B) OT0JF8A3 IL12B_HUMAN Increases Secretion [26]
Interleukin-17A (IL17A) OTY72FT2 IL17_HUMAN Increases Secretion [26]
Sulfiredoxin-1 (SRXN1) OTYDBO4L SRXN1_HUMAN Increases Expression [26]
Gamma-butyrobetaine dioxygenase (BBOX1) OTKEX4RK BODG_HUMAN Increases Expression [35]
Alpha-fetoprotein (AFP) OT9GG3ZI FETA_HUMAN Decreases Expression [35]
Sodium/potassium-transporting ATPase subunit beta-1 (ATP1B1) OTTO6ZP4 AT1B1_HUMAN Increases Expression [35]
Amyloid-beta precursor protein (APP) OTKFD7R4 A4_HUMAN Increases Expression [35]
Osteopontin (SPP1) OTJGC23Y OSTP_HUMAN Decreases Expression [35]
Mucin-1 (MUC1) OTHQI7IY MUC1_HUMAN Increases Expression [35]
14-3-3 protein sigma (SFN) OTLJCZ1U 1433S_HUMAN Decreases Expression [35]
DNA damage-inducible transcript 3 protein (DDIT3) OTI8YKKE DDIT3_HUMAN Decreases Expression [35]
Glutamate--cysteine ligase regulatory subunit (GCLM) OT6CP234 GSH0_HUMAN Decreases Expression [35]
Claudin-2 (CLDN2) OTRF3D6Y CLD2_HUMAN Increases Expression [35]
Large neutral amino acids transporter small subunit 1 (SLC7A5) OT2WPVXD LAT1_HUMAN Decreases Expression [35]
Tribbles homolog 3 (TRIB3) OTG5OS7X TRIB3_HUMAN Increases Expression [35]
Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) OTKOZRZP PLOD2_HUMAN Increases Expression [36]
Transmembrane protease serine 2 (TMPRSS2) OTN44YQ5 TMPS2_HUMAN Affects Expression [37]
Interleukin-1 alpha (IL1A) OTPSGILV IL1A_HUMAN Increases Expression [38]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [38]
Albumin (ALB) OTVMM513 ALBU_HUMAN Affects Binding [39]
Antileukoproteinase (SLPI) OTUNFUU8 SLPI_HUMAN Increases Expression [38]
Catalase (CAT) OTHEBX9R CATA_HUMAN Decreases Activity [40]
Apoptosis regulator Bcl-2 (BCL2) OT9DVHC0 BCL2_HUMAN Decreases Expression [40]
Glucose-6-phosphate 1-dehydrogenase (G6PD) OT300SMK G6PD_HUMAN Decreases Activity [40]
5-aminolevulinate synthase, non-specific, mitochondrial (ALAS1) OTQY6ZSF HEM1_HUMAN Increases Expression [41]
Ferrochelatase, mitochondrial (FECH) OTDWEI6C HEMH_HUMAN Decreases Expression [41]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Decreases Phosphorylation [31]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Decreases Phosphorylation [31]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Increases Expression [38]
Peroxisome proliferator-activated receptor gamma (PPARG) OTHMARHO PPARG_HUMAN Decreases Expression [42]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [40]
Caspase-9 (CASP9) OTD4RFFG CASP9_HUMAN Increases Activity [40]
Apoptosis regulator BAX (BAX) OTAW0V4V BAX_HUMAN Increases Expression [31]
Interleukin-24 (IL24) OT4VUWH1 IL24_HUMAN Increases Expression [38]
Nuclear respiratory factor 1 (NRF1) OTOXWNV8 NRF1_HUMAN Decreases Expression [43]
Natural cytotoxicity triggering receptor 3 ligand 1 (NCR3LG1) OT15YWU7 NR3L1_HUMAN Increases Expression [44]
PTB-containing, cubilin and LRP1-interacting protein (PID1) OT5YJ7FI PCLI1_HUMAN Increases Expression [38]
NAD-dependent protein deacetylase sirtuin-1 (SIRT1) OTAYZMOY SIR1_HUMAN Decreases Expression [43]
Angiotensin-converting enzyme 2 (ACE2) OTTRZGU7 ACE2_HUMAN Decreases Expression [37]
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) OTHCDQ22 PRGC1_HUMAN Decreases Expression [43]
Arylamine N-acetyltransferase 2 (NAT2) OTBPDQOY ARY2_HUMAN Decreases Acetylation [45]
Eosinophil peroxidase (EPX) OTFNDFOK PERE_HUMAN Increases Oxidation [46]
Myeloperoxidase (MPO) OTOOXLIN PERM_HUMAN Increases Oxidation [47]
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Response To Substance [48]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Decreases Response To Substance [49]
------------------------------------------------------------------------------------
⏷ Show the Full List of 59 DOT(s)

Test Results of This Drug Combination in Other Disease Systems

Indication DrugCom ID Cell Line Status REF
Adult T acute lymphoblastic leukemia DC0HA8Q MOLT-4 Investigative [1]
Clear cell renal cell carcinoma DCJVUR0 A498 Investigative [1]
Glioma DCMHZKG SF-268 Investigative [1]
Carcinoma DC1R0YC RXF 393 Investigative [50]
Carcinoma DCBPK86 MCF7 Investigative [50]
Adenocarcinoma DCOV6KY DU-145 Investigative [51]
Adenocarcinoma DC90KMW NCIH23 Investigative [51]
Adenocarcinoma DC6QYWN HCT116 Investigative [51]
High grade ovarian serous adenocarcinoma DCLLB4H NCI\\/ADR-RES Investigative [51]
Lung adenocarcinoma DCY519Z EKVX Investigative [51]
Malignant melanoma DCO0N59 UACC62 Investigative [51]
Melanoma DC39CLU UACC-257 Investigative [51]
Ovarian serous cystadenocarcinoma DCT6ZO4 SK-OV-3 Investigative [51]
------------------------------------------------------------------------------------
⏷ Show the Full List of 13 DrugCom(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 New drugs for the treatment of cancer, 1990-2001. Isr Med Assoc J. 2002 Dec;4(12):1124-31.
3 Isoniazid FDA Label
4 Novel agents in the management of Mycobacterium tuberculosis disease. Curr Med Chem. 2007;14(18):2000-8.
5 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
6 Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion. J Biomed Res. 2016 Mar;30(2):120-133.
7 Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016 Jan 1;370(1):153-64.
8 Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos. 2006 Dec;34(12):2097-101.
9 Co-encapsulation of chrysophsin-1 and epirubicin in PEGylated liposomes circumvents multidrug resistance in HeLa cells. Chem Biol Interact. 2015 Dec 5;242:13-23. doi: 10.1016/j.cbi.2015.08.023. Epub 2015 Sep 1.
10 Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res. 1999 Dec 1;59(23):5938-46.
11 Preliminary study on behaviour of atrial natriuretic factor in anthracycline-related cardiac toxicity. Int J Clin Pharmacol Res. 1991;11(2):75-81.
12 7,3',4'-Trihydroxyisoflavone modulates multidrug resistance transporters and induces apoptosis via production of reactive oxygen species. Toxicology. 2012 Dec 16;302(2-3):221-32. doi: 10.1016/j.tox.2012.08.003. Epub 2012 Aug 15.
13 Early epirubicin-induced myocardial dysfunction revealed by serial tissue Doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncologist. 2007 Sep;12(9):1124-33. doi: 10.1634/theoncologist.12-9-1124.
14 Persistence, up to 18 months of follow-up, of epirubicin-induced myocardial dysfunction detected early by serial tissue Doppler echocardiography: correlation with inflammatory and oxidative stress markers. Oncologist. 2008 Dec;13(12):1296-305. doi: 10.1634/theoncologist.2008-0151. Epub 2008 Dec 5.
15 Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood. 2010 Jan 14;115(2):326-30. doi: 10.1182/blood-2009-07-235051. Epub 2009 Nov 2.
16 (-)-Gossypol enhances the anticancer activity of epirubicin via downregulating survivin in hepatocellular carcinoma. Chem Biol Interact. 2022 Sep 1;364:110060. doi: 10.1016/j.cbi.2022.110060. Epub 2022 Jul 22.
17 The differential effects of cyclophosphamide, epirubicin and 5-fluorouracil on apoptotic marker (CPP-32), pro-apoptotic protein (p21(WAF-1)) and anti-apoptotic protein (bcl-2) in breast cancer cells. Breast Cancer Res Treat. 2003 Aug;80(3):239-44. doi: 10.1023/A:1024995202135.
18 Genome-wide association study of chemotherapeutic agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci. 2013 Aug;104(8):1074-82. doi: 10.1111/cas.12186. Epub 2013 Jun 10.
19 MARVELD1 attenuates arsenic trioxide-induced apoptosis in liver cancer cells by inhibiting reactive oxygen species production. Ann Transl Med. 2019 May;7(9):200. doi: 10.21037/atm.2019.04.38.
20 Genome-wide association study of epirubicin-induced leukopenia in Japanese patients. Pharmacogenet Genomics. 2011 Sep;21(9):552-8. doi: 10.1097/FPC.0b013e328348e48f.
21 [Knock-down of apollon gene by antisense oligodeoxynucleotide inhibits the proliferation of Lovo cells and enhances chemo-sensitivity]. Yao Xue Xue Bao. 2011 Feb;46(2):138-45.
22 [Antisense oligonucleotide targeting survivin induces apoptosis of renal clear-cell carcinoma cells and enhances their sensitivity to epirubicin in vitro]. Zhonghua Zhong Liu Za Zhi. 2005 Aug;27(8):468-70.
23 Endogenous antioxidant enzymes and glutathione S-transferase in protection of mesothelioma cells against hydrogen peroxide and epirubicin toxicity. Br J Cancer. 1998 Apr;77(7):1097-102. doi: 10.1038/bjc.1998.182.
24 S100P contributes to chemosensitivity of human ovarian cancer cell line OVCAR3. Oncol Rep. 2008 Aug;20(2):325-32.
25 TSSC3 overexpression associates with growth inhibition, apoptosis induction and enhances chemotherapeutic effects in human osteosarcoma. Carcinogenesis. 2012 Jan;33(1):30-40. doi: 10.1093/carcin/bgr232. Epub 2011 Oct 21.
26 Characterization of drug-specific signaling between primary human hepatocytes and immune cells. Toxicol Sci. 2017 Jul 1;158(1):76-89.
27 Diversity in enoyl-acyl carrier protein reductases. Cell Mol Life Sci. 2009 May;66(9):1507-17.
28 Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine. Biochem Pharmacol. 2005 Apr 1;69(7):1081-93.
29 Crystal structure of the catalase-peroxidase KatG W78F mutant from Synechococcus elongatus PCC7942 in complex with the antitubercular pro-drug isoniazid. FEBS Lett. 2015 Jan 2;589(1):131-7.
30 The actinobacterium Tsukamurella paurometabola has a functionally divergent arylamine N-acetyltransferase (NAT) homolog. World J Microbiol Biotechnol. 2019 Oct 31;35(11):174.
31 Quercetin protected against isoniazide-induced HepG2 cell apoptosis by activating the SIRT1/ERK pathway. J Biochem Mol Toxicol. 2019 Sep;33(9):e22369. doi: 10.1002/jbt.22369. Epub 2019 Jul 23.
32 ADReCS-Target: target profiles for aiding drug safety research and application. Nucleic Acids Res. 2018 Jan 4;46(D1):D911-D917. doi: 10.1093/nar/gkx899.
33 Mechanism-based inactivation of human cytochrome P4502C8 by drugs in vitro. J Pharmacol Exp Ther. 2004 Dec;311(3):996-1007.
34 Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007 Mar;96(1):101-14.
35 Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol. 2018 Aug;92(8):2517-2531.
36 Identification of differentially expressed genes in hepatic HepG2 cells treated with acetaminophen using suppression subtractive hybridization. Biol Pharm Bull. 2005 Jul;28(7):1148-53. doi: 10.1248/bpb.28.1148.
37 Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020 Dec;94(12):4037-4041. doi: 10.1007/s00204-020-02869-1. Epub 2020 Aug 17.
38 An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol. 2021 Jan;95(1):149-168. doi: 10.1007/s00204-020-02882-4. Epub 2020 Aug 20.
39 Auto-oxidation of Isoniazid Leads to Isonicotinic-Lysine Adducts on Human Serum Albumin. Chem Res Toxicol. 2015 Jan 20;28(1):51-8. doi: 10.1021/tx500285k. Epub 2014 Dec 9.
40 Isoniazid-induced apoptosis in HepG2 cells: generation of oxidative stress and Bcl-2 down-regulation. Toxicol Mech Methods. 2010 Jun;20(5):242-51. doi: 10.3109/15376511003793325.
41 The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis. Toxicol Sci. 2019 Mar 1;168(1):209-224. doi: 10.1093/toxsci/kfy294.
42 Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol Appl Pharmacol. 2013 Dec 15;273(3):435-41. doi: 10.1016/j.taap.2013.10.005. Epub 2013 Oct 12.
43 AMPK activator acadesine fails to alleviate isoniazid-caused mitochondrial instability in HepG2 cells. J Appl Toxicol. 2017 Oct;37(10):1219-1224. doi: 10.1002/jat.3483. Epub 2017 May 29.
44 Enhanced activation of human NK cells by drug-exposed hepatocytes. Arch Toxicol. 2020 Feb;94(2):439-448. doi: 10.1007/s00204-020-02668-8. Epub 2020 Feb 14.
45 Effects of N-acetyltransferase 2 (NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci. 2008 May;33(2):187-95. doi: 10.2131/jts.33.187.
46 Eosinophil peroxidase oxidizes isoniazid to form the active metabolite against M. tuberculosis, isoniazid-NAD(). Chem Biol Interact. 2019 May 25;305:48-53. doi: 10.1016/j.cbi.2019.03.019. Epub 2019 Mar 25.
47 Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites. Biochem Pharmacol. 2016 Apr 15;106:46-55. doi: 10.1016/j.bcp.2016.02.003. Epub 2016 Feb 9.
48 Development of a highly sensitive cytotoxicity assay system for CYP3A4-mediated metabolic activation. Drug Metab Dispos. 2011 Aug;39(8):1388-95. doi: 10.1124/dmd.110.037077. Epub 2011 May 3.
49 Customised in vitro model to detect human metabolism-dependent idiosyncratic drug-induced liver injury. Arch Toxicol. 2018 Jan;92(1):383-399. doi: 10.1007/s00204-017-2036-4. Epub 2017 Jul 31.
50 Biologically active neutrophil chemokine pattern in tonsillitis.Clin Exp Immunol. 2004 Mar;135(3):511-8. doi: 10.1111/j.1365-2249.2003.02390.x.
51 Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.Hum Genet. 2018 Apr;137(4):293-303. doi: 10.1007/s00439-018-1882-3. Epub 2018 Apr 24.