General Information of Drug Combination (ID: DCVFDIL)

Drug Combination Name
Busulfan Spironolactone
Indication
Disease Entry Status REF
Chronic myelogenous leukemia Investigative [1]
Component Drugs Busulfan   DMXYJ9C Spironolactone   DM2AQ5N
Small molecular drug Small molecular drug
2D MOL 2D MOL
3D MOL 3D MOL
High-throughput Screening Result Testing Cell Line: KBM-7
Zero Interaction Potency (ZIP) Score: 17.01
Bliss Independence Score: 17.01
Loewe Additivity Score: 31.29
LHighest Single Agent (HSA) Score: 31.3

Molecular Interaction Atlas of This Drug Combination

Molecular Interaction Atlas (MIA)
Indication(s) of Busulfan
Disease Entry ICD 11 Status REF
Chronic myelogenous leukaemia 2A20.0 Approved [2]
Hematologic disease 3C0Z Approved [2]
Immunodeficiency 4A00-4A85 Approved [2]
Leukemia N.A. Approved [2]
Myeloproliferative syndrome 2A22 Approved [3]
Systemic lupus erythematosus 4A40.0 Approved [2]
Systemic sclerosis 4A42 Approved [2]
Neuroblastoma 2D11.2 Investigative [2]
Retinoblastoma 2D02.2 Investigative [2]
Busulfan Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Human Deoxyribonucleic acid (hDNA) TTUTN1I NOUNIPROTAC Modulator [8]
------------------------------------------------------------------------------------
Busulfan Interacts with 6 DME Molecule(s)
DME Name DME ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) DE4LYSA CP3A4_HUMAN Metabolism [9]
Glutathione S-transferase alpha-1 (GSTA1) DE4ZHS1 GSTA1_HUMAN Metabolism [10]
Glutathione S-transferase alpha-2 (GSTA2) DEH49YS GSTA2_HUMAN Metabolism [11]
Glutathione S-transferase pi (GSTP1) DEK6079 GSTP1_HUMAN Metabolism [12]
Microsomal glutathione S-transferase 2 (MGST2) DE31KMQ MGST2_HUMAN Metabolism [13]
Glutathione S-transferase mu-1 (GSTM1) DEYZEJA GSTM1_HUMAN Metabolism [12]
------------------------------------------------------------------------------------
⏷ Show the Full List of 6 DME(s)
Busulfan Interacts with 34 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Glutathione S-transferase P (GSTP1) OTLP0A0Y GSTP1_HUMAN Affects Abundance [14]
Glutathione S-transferase Mu 1 (GSTM1) OTSBF2MO GSTM1_HUMAN Affects Abundance [14]
Microsomal glutathione S-transferase 2 (MGST2) OT4UGTDO MGST2_HUMAN Decreases Response To Substance [13]
Glutathione S-transferase A1 (GSTA1) OTA7K5XA GSTA1_HUMAN Decreases Response To Substance [15]
Serotransferrin (TF) OT41PEMS TRFE_HUMAN Increases Expression [16]
Inhibin beta A chain (INHBA) OTSP64PQ INHBA_HUMAN Increases Expression [16]
Prostaglandin G/H synthase 2 (PTGS2) OT75U9M4 PGH2_HUMAN Increases Expression [16]
Antithrombin-III (SERPINC1) OTDFATG0 ANT3_HUMAN Affects Expression [17]
Transforming growth factor beta-1 proprotein (TGFB1) OTV5XHVH TGFB1_HUMAN Increases Expression [18]
Tumor necrosis factor (TNF) OT4IE164 TNFA_HUMAN Increases Expression [18]
Cellular tumor antigen p53 (TP53) OTIE1VH3 P53_HUMAN Increases Expression [7]
Cytochrome P450 1A1 (CYP1A1) OTE4EFH8 CP1A1_HUMAN Decreases Activity [19]
Plasminogen activator inhibitor 1 (SERPINE1) OTT0MPQ3 PAI1_HUMAN Increases Expression [18]
Thrombospondin-1 (THBS1) OT0ECWK3 TSP1_HUMAN Increases Expression [18]
Poly polymerase 1 (PARP1) OT310QSG PARP1_HUMAN Increases Cleavage [20]
Tissue factor pathway inhibitor (TFPI) OTA0FX16 TFPI1_HUMAN Decreases Expression [18]
Histone H2AX (H2AX) OT18UX57 H2AX_HUMAN Increases Phosphorylation [20]
Cyclic AMP-dependent transcription factor ATF-4 (ATF4) OTRFV19J ATF4_HUMAN Increases Expression [7]
Nuclear factor NF-kappa-B p105 subunit (NFKB1) OTNRRD8I NFKB1_HUMAN Increases Expression [7]
Mitogen-activated protein kinase 3 (MAPK3) OTCYKGKO MK03_HUMAN Increases Activity [21]
Mitogen-activated protein kinase 1 (MAPK1) OTH85PI5 MK01_HUMAN Increases Activity [21]
Aryl hydrocarbon receptor (AHR) OTFE4EYE AHR_HUMAN Increases Expression [7]
Peroxisome proliferator-activated receptor gamma (PPARG) OTHMARHO PPARG_HUMAN Affects Expression [7]
Cyclin-dependent kinase inhibitor 1 (CDKN1A) OTQWHCZE CDN1A_HUMAN Increases Expression [21]
Signal transducer and activator of transcription 1-alpha/beta (STAT1) OTLMBUZ6 STAT1_HUMAN Affects Expression [7]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [22]
Signal transducer and activator of transcription 2 (STAT2) OTO9G2RZ STAT2_HUMAN Decreases Expression [7]
Caspase-8 (CASP8) OTA8TVI8 CASP8_HUMAN Increases Activity [20]
Metal regulatory transcription factor 1 (MTF1) OTJWVLLF MTF1_HUMAN Decreases Expression [7]
Nuclear factor erythroid 2-related factor 2 (NFE2L2) OT0HENJ5 NF2L2_HUMAN Increases Expression [7]
Hypoxia-inducible factor 1-alpha (HIF1A) OTADSC03 HIF1A_HUMAN Increases Expression [7]
Pseudouridylate synthase 7 homolog (PUS7) OTE5AQHJ PUS7_HUMAN Increases Expression [23]
DNA repair nuclease/redox regulator APEX1 (APEX1) OT53OI14 APEX1_HUMAN Increases Response To Substance [24]
Rho GDP-dissociation inhibitor 1 (ARHGDIA) OTEXWJDO GDIR1_HUMAN Affects Response To Substance [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 34 DOT(s)
Indication(s) of Spironolactone
Disease Entry ICD 11 Status REF
Chronic heart failure BD1Z Approved [4]
Congestive heart failure BD10 Approved [5]
Edema MG29 Approved [4]
Hyperaldosteronism 5A72 Approved [4]
Coronavirus Disease 2019 (COVID-19) 1D6Y Phase 3 [6]
Spironolactone Interacts with 1 DTT Molecule(s)
DTT Name DTT ID UniProt ID Mode of Action REF
Mineralocorticoid receptor (MR) TT26PHO MCR_HUMAN Modulator [25]
------------------------------------------------------------------------------------
Spironolactone Interacts with 21 DOT Molecule(s)
DOT Name DOT ID UniProt ID Mode of Action REF
Cytochrome P450 3A4 (CYP3A4) OTQGYY83 CP3A4_HUMAN Increases Expression [26]
Cytochrome P450 2C8 (CYP2C8) OTHCWT42 CP2C8_HUMAN Decreases Activity [27]
Bile salt export pump (ABCB11) OTRU7THO ABCBB_HUMAN Decreases Activity [28]
Serine/threonine-protein kinase Sgk1 (SGK1) OT301T1U SGK1_HUMAN Increases Expression [29]
Tissue-type plasminogen activator (PLAT) OTQPDNAB TPA_HUMAN Increases Expression [30]
Angiotensinogen (AGT) OTBZLYR3 ANGT_HUMAN Increases Expression [31]
Natriuretic peptides A (NPPA) OTMQNTNX ANF_HUMAN Decreases Expression [32]
Interleukin-1 beta (IL1B) OT0DWXXB IL1B_HUMAN Increases Expression [33]
Collagen alpha-1(III) chain (COL3A1) OTT1EMLM CO3A1_HUMAN Decreases Expression [32]
Trefoil factor 1 (TFF1) OTCYQH4F TFF1_HUMAN Increases Expression [34]
Plasminogen activator inhibitor 1 (SERPINE1) OTT0MPQ3 PAI1_HUMAN Decreases Expression [30]
ATP-dependent translocase ABCB1 (ABCB1) OTEJROBO MDR1_HUMAN Increases Expression [35]
Mineralocorticoid receptor (NR3C2) OT0F2V2Z MCR_HUMAN Increases Activity [36]
Myb-related protein A (MYBL1) OTBJMC2P MYBA_HUMAN Increases Expression [29]
Androgen receptor (AR) OTUBKAZZ ANDR_HUMAN Affects Binding [37]
Natriuretic peptides B (NPPB) OTSN2IPY ANFB_HUMAN Decreases Expression [32]
Caspase-3 (CASP3) OTIJRBE7 CASP3_HUMAN Increases Activity [38]
Caspase-7 (CASP7) OTAPJ040 CASP7_HUMAN Increases Activity [38]
Protein GREB1 (GREB1) OTU6ZA26 GREB1_HUMAN Increases Expression [29]
Renin (REN) OT52GZR2 RENI_HUMAN Decreases Response To Substance [39]
Serum paraoxonase/lactonase 3 (PON3) OT80W9TA PON3_HUMAN Increases Hydrolysis [40]
------------------------------------------------------------------------------------
⏷ Show the Full List of 21 DOT(s)

References

1 Recurrent recessive mutation in deoxyguanosine kinase causes idiopathic noncirrhotic portal hypertension.Hepatology. 2016 Jun;63(6):1977-86. doi: 10.1002/hep.28499. Epub 2016 Mar 31.
2 Busulfan FDA Label
3 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 7136).
4 Spironolactone FDA Label
5 URL: http://www.guidetopharmacology.org Nucleic Acids Res. 2015 Oct 12. pii: gkv1037. The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. (Ligand id: 2875).
6 Spironolactone in Covid-19 Induced ARDS
7 Direct transcriptomic comparison of xenobiotic metabolism and toxicity pathway induction of airway epithelium models at an air-liquid interface generated from induced pluripotent stem cells and primary bronchial epithelial cells. Cell Biol Toxicol. 2023 Feb;39(1):1-18. doi: 10.1007/s10565-022-09726-0. Epub 2022 May 31.
8 DNA intrastrand cross-link at the 5'-GA-3' sequence formed by busulfan and its role in the cytotoxic effect. Cancer Sci. 2004 May;95(5):454-8.
9 Update: clinically significant cytochrome P-450 drug interactions. Pharmacotherapy. 1998 Jan-Feb;18(1):84-112.
10 Glutathione S-transferase M1 polymorphism: a risk factor for hepatic venoocclusive disease in bone marrow transplantation. Blood. 2004 Sep 1;104(5):1574-7.
11 Endothelial cells do not express GSTA1: potential relevance to busulfan-mediated endothelial damage during haematopoietic stem cell transplantation. Eur J Haematol. 2008 Apr;80(4):299-302.
12 Busulfan conjugation by glutathione S-transferases alpha, mu, and pi. Drug Metab Dispos. 1996 Sep;24(9):1015-9.
13 Overexpression of glutathione-S-transferase, MGSTII, confers resistance to busulfan and melphalan. Cancer Invest. 2005;23(1):19-25.
14 Influence of glutathione S-transferase A1, P1, M1, T1 polymorphisms on oral busulfan pharmacokinetics in children with congenital hemoglobinopathies undergoing hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2010 Dec 1;55(6):1172-9. doi: 10.1002/pbc.22739.
15 Overexpression of glutathione S-transferase A1-1 in ECV 304 cells protects against busulfan mediated G2-arrest and induces tissue factor expression. Br J Pharmacol. 2002 Dec;137(7):1100-6. doi: 10.1038/sj.bjp.0704972.
16 Busulfan induces activin A expression in vitro and in vivo: a possible link to venous occlusive disease. Clin Pharmacol Ther. 2003 Sep;74(3):264-74.
17 Decreased incidence of hepatic veno-occlusive disease and fewer hemostatic derangements associated with intravenous busulfan vs oral busulfan in adults conditioned with busulfan + cyclophosphamide for allogeneic bone marrow transplantation. Ann Hematol. 2005 May;84(5):321-30. doi: 10.1007/s00277-004-0982-4. Epub 2004 Dec 4.
18 Antineoplastic agent busulfan regulates a network of genes related to coagulation and fibrinolysis. Eur J Clin Pharmacol. 2012 Jun;68(6):923-35. doi: 10.1007/s00228-011-1209-y.
19 Association of CYP1A1 and CYP1B1 inhibition in in vitro assays with drug-induced liver injury. J Toxicol Sci. 2021;46(4):167-176. doi: 10.2131/jts.46.167.
20 Altered gene expression in busulfan-resistant human myeloid leukemia. Leuk Res. 2008 Nov;32(11):1684-97. doi: 10.1016/j.leukres.2008.01.016. Epub 2008 Mar 12.
21 Busulfan selectively induces cellular senescence but not apoptosis in WI38 fibroblasts via a p53-independent but extracellular signal-regulated kinase-p38 mitogen-activated protein kinase-dependent mechanism. J Pharmacol Exp Ther. 2006 Nov;319(2):551-60. doi: 10.1124/jpet.106.107771. Epub 2006 Aug 1.
22 Reduced expression of Rho guanine nucleotide dissociation inhibitor-alpha modulates the cytotoxic effect of busulfan in HEK293 cells. Anticancer Drugs. 2007 Mar;18(3):333-40. doi: 10.1097/CAD.0b013e328011fd7f.
23 CD34+ derived macrophage and dendritic cells display differential responses to paraquat. Toxicol In Vitro. 2021 Sep;75:105198. doi: 10.1016/j.tiv.2021.105198. Epub 2021 Jun 9.
24 Impairment of APE1 function enhances cellular sensitivity to clinically relevant alkylators and antimetabolites. Mol Cancer Res. 2009 Jun;7(6):897-906. doi: 10.1158/1541-7786.MCR-08-0519. Epub 2009 May 26.
25 Drugs@FDA. U.S. Food and Drug Administration. U.S. Department of Health & Human Services.
26 Receptor-dependent regulation of the CYP3A4 gene. Toxicology. 2002 Dec 27;181-182:199-202.
27 Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol. 2005 Jan;45(1):68-78.
28 Early identification of clinically relevant drug interactions with the human bile salt export pump (BSEP/ABCB11). Toxicol Sci. 2013 Dec;136(2):328-43.
29 A Gene Expression Biomarker Identifies Chemical Modulators of Estrogen Receptor in an MCF-7 Microarray Compendium. Chem Res Toxicol. 2021 Feb 15;34(2):313-329. doi: 10.1021/acs.chemrestox.0c00243. Epub 2021 Jan 6.
30 Effect of spironolactone on impaired fibrinolysis of hypertensive patients. Kidney Blood Press Res. 2002;25(4):260-4. doi: 10.1159/000066348.
31 Amiloride, spironolactone, and potassium chloride in thiazide-treated hypertensive patients. Clin Pharmacol Ther. 1980 Apr;27(4):533-43. doi: 10.1038/clpt.1980.75.
32 Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol. 2001 Apr;37(5):1228-33. doi: 10.1016/s0735-1097(01)01116-0.
33 Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression. Apoptosis. 2006 Apr;11(4):573-9. doi: 10.1007/s10495-006-4919-3.
34 Evaluation of an imaging-based in vitro screening platform for estrogenic activity with OECD reference chemicals. Toxicol In Vitro. 2022 Jun;81:105348. doi: 10.1016/j.tiv.2022.105348. Epub 2022 Mar 18.
35 Pregnane X receptor mediates the induction of P-glycoprotein by spironolactone in HepG2 cells. Toxicology. 2011 Jul 11;285(1-2):18-24. doi: 10.1016/j.tox.2011.03.015. Epub 2011 Apr 1.
36 The human mineralocorticoid receptor only partially differentiates between different ligands after expression in fission yeast. FEMS Yeast Res. 2005 Apr;5(6-7):627-33. doi: 10.1016/j.femsyr.2004.12.007.
37 Comparison of the Hershberger assay and androgen receptor binding assay of twelve chemicals. Toxicology. 2004 Feb 15;195(2-3):177-86. doi: 10.1016/j.tox.2003.09.012.
38 Palmitate increases the susceptibility of cells to drug-induced toxicity: an in vitro method to identify drugs with potential contraindications in patients with metabolic disease. Toxicol Sci. 2012 Oct;129(2):346-62. doi: 10.1093/toxsci/kfs208. Epub 2012 Jun 14.
39 Clinical and biochemical effects of spironolactone administered once daily in primary hypertension. Multicenter Sweden study. Hypertension. 1980 Sep-Oct;2(5):672-9. doi: 10.1161/01.hyp.2.5.672.
40 Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities. J Lipid Res. 2005 Jun;46(6):1239-47. doi: 10.1194/jlr.M400511-JLR200. Epub 2005 Mar 16.