General Information of Disease (ID: DISJ5R1X)

Disease Name Pituitary adenoma
Synonyms
PTAD; pituitary gland adenoma; adenoma of the pituitary; pituitary adenoma; adenoma of the pituitary gland; adenoma of pituitary; adenoma of pituitary gland; adenoma, anterior lobe pituitary gland, benign
Disease Class 2F37: Endocrine gland neoplasm
Definition
A non-metastasizing tumor that arises from the adenohypophysial cells of the anterior lobe of the pituitary gland. The tumor can be hormonally functioning or not. The diagnosis can be based on imaging studies and/or radioimmunoassays. Due to its location in the sella turcica, expansion of the tumor mass can impinge on the optic chiasm or involve the temporal lobe, third ventricle and posterior fossa A frequently associated physical finding is bitemporal hemianopsia which may progress to further visual loss.
Disease Hierarchy
DISN67JD: Pituitary tumor
DIS78ZEV: Adenoma
DISJ5R1X: Pituitary adenoma
ICD Code
ICD-11
ICD-11: 2F37.0
Disease Identifiers
MONDO ID
MONDO_0006373
MESH ID
D010911
UMLS CUI
C0032000
MedGen ID
45933
HPO ID
HP:0002893
Orphanet ID
99408
SNOMED CT ID
254956000

Drug-Interaction Atlas (DIA) of This Disease

Drug-Interaction Atlas (DIA)
This Disease is Treated as An Indication in 1 Clinical Trial Drug(s)
Drug Name Drug ID Highest Status Drug Type REF
TBR-760 DMM5BVG Phase 2 Small molecular drug [1]
------------------------------------------------------------------------------------

Molecular Interaction Atlas (MIA) of This Disease

Molecular Interaction Atlas (MIA)
This Disease Is Related to 16 DTT Molecule(s)
Gene Name DTT ID Evidence Level Mode of Inheritance REF
AGTR1 TT8DBY3 Limited Biomarker [2]
CDKN2C TTBRUGA Limited Genetic Variation [3]
PRL TTJ2TSA Limited Biomarker [4]
SSTR2 TTZ6T9E Limited Biomarker [5]
CDK8 TTBJR4L Strong Genetic Variation [6]
CDKN1B TTLGFVW Strong Biomarker [3]
DRD2 TTEX248 Strong Genetic Variation [7]
EGFL7 TT7WD0H Strong Biomarker [8]
EPCAM TTZ8WH4 Strong Biomarker [9]
FGF4 TTCEKVZ Strong Biomarker [10]
GH1 TTT3YKH Strong Biomarker [11]
IGF1 TTT6LOU Strong Biomarker [11]
MSH2 TTCAWRT Strong Altered Expression [12]
PRKAR1A TTNAHEX Strong Genetic Variation [3]
SSTR1 TTIND6G Strong Altered Expression [13]
SSTR5 TT2BC4G Strong Biomarker [5]
------------------------------------------------------------------------------------
⏷ Show the Full List of 16 DTT(s)
This Disease Is Related to 1 DTP Molecule(s)
Gene Name DTP ID Evidence Level Mode of Inheritance REF
SLC20A1 DTMULXV Limited Biomarker [14]
------------------------------------------------------------------------------------
This Disease Is Related to 1 DME Molecule(s)
Gene Name DME ID Evidence Level Mode of Inheritance REF
P4HA3 DE2L4RX Strong Altered Expression [15]
------------------------------------------------------------------------------------
This Disease Is Related to 23 DOT Molecule(s)
Gene Name DOT ID Evidence Level Mode of Inheritance REF
POU1F1 OTXT8A5C Limited Biomarker [14]
GNAS OTMH8BKJ moderate Genetic Variation [3]
AIP OTDJ3OSV Strong Genetic Variation [16]
ASH1L OTUT5NLJ Strong Biomarker [17]
CDH23 OTOJGQ7S Strong Genetic Variation [18]
CHL1 OT6E6E8P Strong Altered Expression [19]
COL6A6 OT4MVGRW Strong Altered Expression [15]
ESRP2 OTVTKJ4I Strong Biomarker [20]
KCNAB2 OTH115IE Strong Posttranslational Modification [21]
MAMLD1 OT9EVMQY Strong Altered Expression [22]
MSH6 OT46FP09 Strong Altered Expression [12]
NEUROD1 OTZQ7QJ2 Strong Altered Expression [23]
NEUROG1 OTMJZP9G Strong Altered Expression [23]
NEUROG2 OTAEMIGT Strong Biomarker [23]
NEUROG3 OT6DIPWC Strong Genetic Variation [23]
PCDH15 OTU9C2EH Strong Genetic Variation [6]
PRLH OTJBP360 Strong Altered Expression [24]
PRLHR OT1THGOP Strong Biomarker [24]
RHBDD3 OTJ3OLC8 Strong Genetic Variation [25]
RNF31 OT4BZONL Strong Biomarker [26]
SCGN OTGD7SKH Strong Biomarker [27]
SCP2 OTPAFCPQ Strong Altered Expression [28]
SNED1 OTBQVXY5 Strong Biomarker [29]
------------------------------------------------------------------------------------
⏷ Show the Full List of 23 DOT(s)

References

1 ClinicalTrials.gov (NCT04335357) TBR-760 in Adult Patients With Non-Functioning Pituitary Adenomas. U.S. National Institutes of Health.
2 Immunohistochemical detection of angiotensin receptors AT1 and AT2 in normal rat pituitary gland, estrogen-induced rat pituitary tumor and human pituitary adenomas.Folia Histochem Cytobiol. 2006;44(3):173-7.
3 The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes.Clin Genet. 2010 Nov;78(5):457-63. doi: 10.1111/j.1399-0004.2010.01406.x.
4 Ex Vivo (1)H NMR study of pituitary adenomas to differentiate various immunohistochemical subtypes.Sci Rep. 2019 Feb 28;9(1):3007. doi: 10.1038/s41598-019-38542-6.
5 Clinical Importance of Somatostatin Receptor 2 (SSTR2) and Somatostatin Receptor 5 (SSTR5) Expression in Thyrotropin-Producing Pituitary Adenoma (TSHoma).Med Sci Monit. 2017 Apr 23;23:1947-1955. doi: 10.12659/msm.903377.
6 Common variants at 10p12.31, 10q21.1 and 13q12.13 are associated with sporadic pituitary adenoma.Nat Genet. 2015 Jul;47(7):793-7. doi: 10.1038/ng.3322. Epub 2015 Jun 1.
7 Polymorphisms in MEN1 and DRD2 genes are associated with the occurrence and characteristics of pituitary adenomas.Eur J Endocrinol. 2016 Aug;175(2):145-53. doi: 10.1530/EJE-15-0879. Epub 2016 May 16.
8 EGFL7 participates in regulating biological behavior of growth hormone-secreting pituitary adenomas via Notch2/DLL3 signaling pathway.Tumour Biol. 2017 Jul;39(7):1010428317706203. doi: 10.1177/1010428317706203.
9 Diagnosis of Invasive Nonfunctional Pituitary Adenomas by Serum Extracellular Vesicles.Anal Chem. 2019 Aug 6;91(15):9580-9589. doi: 10.1021/acs.analchem.9b00914. Epub 2019 Jul 18.
10 Role of mTOR Inhibitors in Growth Hormone-Producing Pituitary Adenomas Harboring Different FGFR4 Genotypes.Endocrinology. 2016 Sep;157(9):3577-87. doi: 10.1210/en.2016-1028. Epub 2016 Jun 7.
11 E-cadherin expression is associated with somatostatin analogue response in acromegaly.J Cell Mol Med. 2019 May;23(5):3088-3096. doi: 10.1111/jcmm.13851. Epub 2019 Mar 6.
12 Reduced Expression of Mismatch Repair Genes MSH6/MSH2 Directly Promotes Pituitary Tumor Growth via the ATR-Chk1 Pathway.J Clin Endocrinol Metab. 2018 Mar 1;103(3):1171-1179. doi: 10.1210/jc.2017-02332.
13 Expression of somatostatin receptor (SSTR) subtypes in pituitary adenomas: quantitative analysis of SSTR2 mRNA by reverse transcription-polymerase chain reaction.J Neuroendocrinol. 1996 Aug;8(8):605-10.
14 Utility of Pit-1 Immunostaining in Distinguishing Pituitary Adenomas of Primitive Differentiation from Null Cell Adenomas.Endocr Pathol. 2017 Dec;28(4):287-292. doi: 10.1007/s12022-017-9503-6.
15 COL6A6 interacted with P4HA3 to suppress the growth and metastasis of pituitary adenoma via blocking PI3K-Akt pathway.Aging (Albany NY). 2019 Oct 17;11(20):8845-8859. doi: 10.18632/aging.102300. Epub 2019 Oct 17.
16 Three Novel MEN1 Variants in AIP-Negative Familial Isolated Pituitary Adenoma Patients.Pathobiology. 2019;86(2-3):128-134. doi: 10.1159/000495252. Epub 2019 Jan 10.
17 Human pituitary tumours express the bHLH transcription factors NeuroD1 and ASH1.J Endocrinol Invest. 2003 Oct;26(10):957-65. doi: 10.1007/BF03348192.
18 Germline Mutations in CDH23, Encoding Cadherin-Related 23, Are Associated with Both Familial and Sporadic Pituitary Adenomas.Am J Hum Genet. 2017 May 4;100(5):817-823. doi: 10.1016/j.ajhg.2017.03.011. Epub 2017 Apr 13.
19 Towards an integrated molecular and clinical strategy to predict early recurrence in surgically resected non-functional pituitary adenomas.J Clin Neurosci. 2012 Nov;19(11):1535-40. doi: 10.1016/j.jocn.2012.01.038. Epub 2012 Sep 17.
20 Long-noncoding RNA IFNG-AS1 exerts oncogenic properties by interacting with epithelial splicing regulatory protein 2 (ESRP2) in pituitary adenomas.Pathol Res Pract. 2018 Dec;214(12):2054-2061. doi: 10.1016/j.prp.2018.09.023. Epub 2018 Sep 29.
21 A pilot genome-scale profiling of DNA methylation in sporadic pituitary macroadenomas: association with tumor invasion and histopathological subtype.PLoS One. 2014 Apr 29;9(4):e96178. doi: 10.1371/journal.pone.0096178. eCollection 2014.
22 Attenuation of MAMLD1 Expression Suppresses the Growth and Migratory Properties of Gonadotroph Pituitary Adenomas.Pathol Oncol Res. 2020 Apr;26(2):937-946. doi: 10.1007/s12253-019-00615-2. Epub 2019 Mar 25.
23 Differential expression of neurogenins and NeuroD1 in human pituitary tumours.J Endocrinol. 2007 Sep;194(3):475-84. doi: 10.1677/JOE-07-0020.
24 Does prolactin releasing peptide receptor regulate prolactin-secretion in human pituitary adenomas?.Neurosci Lett. 2000 Sep 22;291(3):159-62. doi: 10.1016/s0304-3940(00)01413-0.
25 The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: a systematic review of the literature.PLoS One. 2013 Dec 18;8(12):e82619. doi: 10.1371/journal.pone.0082619. eCollection 2013.
26 MicroRNA-378 regulates cell proliferation and migration by repressing RNF31 in pituitary adenoma.Oncol Lett. 2018 Jan;15(1):789-794. doi: 10.3892/ol.2017.7431. Epub 2017 Nov 16.
27 Proteomics and transcriptomics analyses of secretagogin down-regulation in human non-functional pituitary adenomas.Pituitary. 2003;6(4):189-202. doi: 10.1023/b:pitu.0000023426.99808.40.
28 SCP2-mediated cholesterol membrane trafficking promotes the growth of pituitary adenomas via Hedgehog signaling activation.J Exp Clin Cancer Res. 2019 Sep 13;38(1):404. doi: 10.1186/s13046-019-1411-9.
29 A Critical Evaluation of sst3 and sst5 Immunohistochemistry in Human Pituitary Adenomas.Neuroendocrinology. 2018;106(2):116-127. doi: 10.1159/000472563. Epub 2017 Apr 7.