General Information of Drug Off-Target (DOT) (ID: OTDJ3OSV)

DOT Name AH receptor-interacting protein (AIP)
Synonyms AIP; Aryl-hydrocarbon receptor-interacting protein; HBV X-associated protein 2; XAP-2; Immunophilin homolog ARA9
Gene Name AIP
Related Disease
Acromegaly ( )
Acute intermittent hepatic porphyria ( )
Adenoma ( )
Adrenal adenoma ( )
Adrenal cortex neoplasm ( )
Adrenocortical carcinoma ( )
B-cell lymphoma ( )
Cardiovascular disease ( )
Carney complex ( )
Cushing disease ( )
Gastrointestinal stromal tumour ( )
Growth hormone secreting pituitary adenoma 1 ( )
Growth hormone-producing pituitary gland adenoma ( )
Hepatitis B virus infection ( )
Hepatocellular carcinoma ( )
Hereditary nonpolyposis colon cancer ( )
Lymphoma ( )
Lynch syndrome ( )
McCune-Albright syndrome ( )
Multiple endocrine neoplasia ( )
Multiple intestinal atresia ( )
Paraganglioma ( )
Pheochromocytoma ( )
Pituitary adenoma ( )
Pituitary tumor ( )
Primary hyperparathyroidism ( )
Prostate carcinoma ( )
Meningioma ( )
Obstructive jaundice ( )
Familial isolated pituitary adenoma ( )
Pituitary gigantism ( )
Adrenal gland neoplasm ( )
Arrhythmia ( )
Chronic pancreatitis ( )
Colorectal carcinoma ( )
GNE myopathy ( )
Nematode infection ( )
Pancreatic cancer ( )
Pituitary gland disorder ( )
Prostate cancer ( )
UniProt ID
AIP_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2LKN; 4AIF; 4APO; 7ZUB
Pfam ID
PF00254
Sequence
MADIIARLREDGIQKRVIQEGRGELPDFQDGTKATFHYRTLHSDDEGTVLDDSRARGKPM
ELIIGKKFKLPVWETIVCTMREGEIAQFLCDIKHVVLYPLVAKSLRNIAVGKDPLEGQRH
CCGVAQMREHSSLGHADLDALQQNPQPLIFHMEMLKVESPGTYQQDPWAMTDEEKAKAVP
LIHQEGNRLYREGHVKEAAAKYYDAIACLKNLQMKEQPGSPEWIQLDQQITPLLLNYCQC
KLVVEEYYEVLDHCSSILNKYDDNVKAYFKRGKAHAAVWNAQEAQADFAKVLELDPALAP
VVSRELRALEARIRQKDEEDKARFRGIFSH
Function
May play a positive role in AHR-mediated (aromatic hydrocarbon receptor) signaling, possibly by influencing its receptivity for ligand and/or its nuclear targeting.; Cellular negative regulator of the hepatitis B virus (HBV) X protein.
Tissue Specificity Widely expressed. Higher levels seen in the heart, placenta and skeletal muscle. Not expressed in the liver.
KEGG Pathway
Cushing syndrome (hsa04934 )
Chemical carcinogenesis - receptor activation (hsa05207 )
Reactome Pathway
Gene and protein expression by JAK-STAT signaling after Interleukin-12 stimulation (R-HSA-8950505 )
Aryl hydrocarbon receptor signalling (R-HSA-8937144 )

Molecular Interaction Atlas (MIA) of This DOT

40 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Acromegaly DISCC73U Definitive Altered Expression [1]
Acute intermittent hepatic porphyria DIS80J7E Strong Biomarker [2]
Adenoma DIS78ZEV Strong Genetic Variation [3]
Adrenal adenoma DISC2UN8 Strong Genetic Variation [4]
Adrenal cortex neoplasm DISO17X1 Strong Altered Expression [5]
Adrenocortical carcinoma DISZF4HX Strong Biomarker [6]
B-cell lymphoma DISIH1YQ Strong Altered Expression [7]
Cardiovascular disease DIS2IQDX Strong Biomarker [8]
Carney complex DISVL3IP Strong Genetic Variation [9]
Cushing disease DISOG6P2 Strong Genetic Variation [10]
Gastrointestinal stromal tumour DIS6TJYS Strong Genetic Variation [4]
Growth hormone secreting pituitary adenoma 1 DISE8ZV7 Strong Autosomal dominant [11]
Growth hormone-producing pituitary gland adenoma DIS45N3K Strong Altered Expression [12]
Hepatitis B virus infection DISLQ2XY Strong Biomarker [13]
Hepatocellular carcinoma DIS0J828 Strong Biomarker [14]
Hereditary nonpolyposis colon cancer DISPA49R Strong Genetic Variation [15]
Lymphoma DISN6V4S Strong Altered Expression [7]
Lynch syndrome DIS3IW5F Strong Genetic Variation [15]
McCune-Albright syndrome DISCO2QT Strong Genetic Variation [16]
Multiple endocrine neoplasia DISZGBKW Strong Genetic Variation [17]
Multiple intestinal atresia DISNUH76 Strong Genetic Variation [18]
Paraganglioma DIS2XXH5 Strong Genetic Variation [4]
Pheochromocytoma DIS56IFV Strong Genetic Variation [4]
Pituitary adenoma DISJ5R1X Strong Genetic Variation [19]
Pituitary tumor DISN67JD Strong Genetic Variation [20]
Primary hyperparathyroidism DISB4U1Q Strong Biomarker [21]
Prostate carcinoma DISMJPLE Strong Biomarker [22]
Meningioma DISPT4TG moderate Genetic Variation [23]
Obstructive jaundice DIS2FDOT moderate Biomarker [24]
Familial isolated pituitary adenoma DISNEVYF Supportive Autosomal dominant [11]
Pituitary gigantism DISIUHNT Supportive Autosomal dominant [25]
Adrenal gland neoplasm DISFK7RF Limited Biomarker [6]
Arrhythmia DISFF2NI Limited Biomarker [26]
Chronic pancreatitis DISBUOMJ Limited Biomarker [27]
Colorectal carcinoma DIS5PYL0 Limited Genetic Variation [28]
GNE myopathy DIS73X4W Limited Biomarker [29]
Nematode infection DISVFLRK Limited Biomarker [30]
Pancreatic cancer DISJC981 Limited Biomarker [31]
Pituitary gland disorder DIS7XB48 Limited Genetic Variation [32]
Prostate cancer DISF190Y Limited Biomarker [22]
------------------------------------------------------------------------------------
⏷ Show the Full List of 40 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
3 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of AH receptor-interacting protein (AIP). [33]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of AH receptor-interacting protein (AIP). [42]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of AH receptor-interacting protein (AIP). [44]
------------------------------------------------------------------------------------
15 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of AH receptor-interacting protein (AIP). [34]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of AH receptor-interacting protein (AIP). [35]
Doxorubicin DMVP5YE Approved Doxorubicin increases the expression of AH receptor-interacting protein (AIP). [36]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of AH receptor-interacting protein (AIP). [37]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of AH receptor-interacting protein (AIP). [38]
Temozolomide DMKECZD Approved Temozolomide decreases the expression of AH receptor-interacting protein (AIP). [39]
Methotrexate DM2TEOL Approved Methotrexate increases the expression of AH receptor-interacting protein (AIP). [40]
Selenium DM25CGV Approved Selenium increases the expression of AH receptor-interacting protein (AIP). [41]
Isotretinoin DM4QTBN Approved Isotretinoin decreases the expression of AH receptor-interacting protein (AIP). [35]
Alitretinoin DMME8LH Approved Alitretinoin decreases the expression of AH receptor-interacting protein (AIP). [35]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of AH receptor-interacting protein (AIP). [43]
Trichostatin A DM9C8NX Investigative Trichostatin A affects the expression of AH receptor-interacting protein (AIP). [45]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of AH receptor-interacting protein (AIP). [46]
[3H]methyltrienolone DMTSGOW Investigative [3H]methyltrienolone decreases the expression of AH receptor-interacting protein (AIP). [47]
all-trans-4-oxo-retinoic acid DMM2R1N Investigative all-trans-4-oxo-retinoic acid decreases the expression of AH receptor-interacting protein (AIP). [35]
------------------------------------------------------------------------------------
⏷ Show the Full List of 15 Drug(s)

References

1 Circulating aryl hydrocarbon receptor-interacting protein (AIP) is independent of GH secretion.Endocr Connect. 2019 Apr;8(4):326-337. doi: 10.1530/EC-19-0082.
2 AIP and MEN1 mutations and AIP immunohistochemistry in pituitary adenomas in a tertiary referral center.Endocr Connect. 2019 Apr;8(4):338-348. doi: 10.1530/EC-19-0027.
3 Phosphodiesterases and cAMP Pathway in Pituitary Diseases.Front Endocrinol (Lausanne). 2019 Mar 19;10:141. doi: 10.3389/fendo.2019.00141. eCollection 2019.
4 Multiple endocrine neoplasias: advances and challenges for the future.J Intern Med. 2009 Jul;266(1):1-4. doi: 10.1111/j.1365-2796.2009.02108.x.
5 Isolated familial somatotropinoma: 11q13-loh and gene/protein expression analysis suggests a possible involvement of aip also in non-pituitary tumorigenesis.Clinics (Sao Paulo). 2010 Apr;65(4):407-15. doi: 10.1590/S1807-59322010000400010.
6 PURE ANDROGEN-PRODUCING ADRENAL TUMOR: CLINICAL FEATURES AND PATHOGENESIS.Endocr Pract. 2017 Apr 2;23(4):399-407. doi: 10.4158/EP161580.OR. Epub 2017 Jan 17.
7 Aryl Hydrocarbon Receptor Interacting Protein Maintains Germinal Center B Cells through Suppression of BCL6 Degradation.Cell Rep. 2019 Apr 30;27(5):1461-1471.e4. doi: 10.1016/j.celrep.2019.04.014.
8 Atherogenic impact of lecithin-cholesterol acyltransferase and its relation to cholesterol esterification rate in HDL (FER(HDL)) and AIP [log(TG/HDL-C)] biomarkers: the butterfly effect?.Physiol Res. 2017 May 4;66(2):193-203. doi: 10.33549/physiolres.933621.
9 Growth hormone-producing pituitary adenomas in childhood and young adulthood: clinical features and outcomes.Pituitary. 2018 Feb;21(1):1-9. doi: 10.1007/s11102-017-0836-4.
10 Germline AIP mutations in apparently sporadic pituitary adenomas: prevalence in a prospective single-center cohort of 443 patients.J Clin Endocrinol Metab. 2012 Apr;97(4):E663-70. doi: 10.1210/jc.2011-2291. Epub 2012 Feb 8.
11 AIP Familial Isolated Pituitary Adenomas. 2012 Jun 21 [updated 2020 Apr 16]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews(?) [Internet]. Seattle (WA): University of Washington, Seattle; 1993C2024.
12 AIP and the somatostatin system in pituitary tumours.J Endocrinol. 2017 Dec;235(3):R101-R116. doi: 10.1530/JOE-17-0254. Epub 2017 Aug 23.
13 XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation.Nucleic Acids Res. 1996 Dec 1;24(23):4741-50. doi: 10.1093/nar/24.23.4741.
14 Screening for hepatocellular carcinoma in acute intermittent porphyria: a 15-year follow-up in northern Sweden.J Intern Med. 2011 May;269(5):538-45. doi: 10.1111/j.1365-2796.2010.02335.x. Epub 2010 Dec 28.
15 Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations.Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4101-5. doi: 10.1073/pnas.0700004104. Epub 2007 Feb 28.
16 Sporadic and genetic forms of paediatric somatotropinoma: a retrospective analysis of seven cases and a review of the literature.Orphanet J Rare Dis. 2011 Oct 24;6:67. doi: 10.1186/1750-1172-6-67.
17 Prevalence of AIP mutations in a large series of sporadic Italian acromegalic patients and evaluation of CDKN1B status in acromegalic patients with multiple endocrine neoplasia.Eur J Endocrinol. 2010 Sep;163(3):369-76. doi: 10.1530/EJE-10-0327. Epub 2010 Jun 7.
18 Should aip gene screening be recommended in family members of FIPA patients with R16H variant?.Pituitary. 2013 Jun;16(2):238-44. doi: 10.1007/s11102-012-0409-5.
19 Three Novel MEN1 Variants in AIP-Negative Familial Isolated Pituitary Adenoma Patients.Pathobiology. 2019;86(2-3):128-134. doi: 10.1159/000495252. Epub 2019 Jan 10.
20 AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor.Nat Commun. 2017 Nov 9;8(1):1380. doi: 10.1038/s41467-017-01704-z.
21 Mutation analysis of MEN1, HRPT2, CASR, CDKN1B, and AIP genes in primary hyperparathyroidism patients with features of genetic predisposition.J Endocrinol Invest. 2009 Jun;32(6):512-8. doi: 10.1007/BF03346498. Epub 2009 Mar 26.
22 Phenotype-specific CpG island methylation events in a murine model of prostate cancer.Cancer Res. 2008 Jun 1;68(11):4173-82. doi: 10.1158/0008-5472.CAN-07-6715.
23 Genetic analysis in a patient presenting with meningioma and familial isolated pituitary adenoma (FIPA) reveals selective involvement of the R81X mutation of the AIP gene in the pathogenesis of the pituitary tumor.Pituitary. 2012 Dec;15 Suppl 1:S61-7. doi: 10.1007/s11102-012-0391-y.
24 Autoimmune Pancreatitis.Am J Gastroenterol. 2018 Sep;113(9):1301. doi: 10.1038/s41395-018-0146-0. Epub 2018 Jun 18.
25 Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocr Relat Cancer. 2015 Oct;22(5):745-57. doi: 10.1530/ERC-15-0320. Epub 2015 Jul 17.
26 Gene Therapy for Catecholaminergic Polymorphic Ventricular Tachycardia by Inhibition of Ca(2+)/Calmodulin-Dependent Kinase II.Circulation. 2019 Jul 30;140(5):405-419. doi: 10.1161/CIRCULATIONAHA.118.038514. Epub 2019 Jun 3.
27 The Propagation Display Method Improves the Reproducibility of Pancreatic Shear Wave Elastography.Ultrasound Med Biol. 2019 Aug;45(8):2242-2247. doi: 10.1016/j.ultrasmedbio.2019.04.003. Epub 2019 May 16.
28 Mutation analysis of aryl hydrocarbon receptor interacting protein (AIP) gene in colorectal, breast, and prostate cancers.Br J Cancer. 2007 Jan 29;96(2):352-6. doi: 10.1038/sj.bjc.6603573.
29 The novel CaMKII inhibitor GS-680 reduces diastolic SR Ca leak and prevents CaMKII-dependent pro-arrhythmic activity.J Mol Cell Cardiol. 2018 May;118:159-168. doi: 10.1016/j.yjmcc.2018.03.020. Epub 2018 Mar 31.
30 Purification and cloning of an apoptosis-inducing protein derived from fish infected with Anisakis simplex, a causative nematode of human anisakiasis.J Immunol. 2000 Aug 1;165(3):1491-7. doi: 10.4049/jimmunol.165.3.1491.
31 Contrast-Enhanced Endoscopic Ultrasound for Differentially Diagnosing Autoimmune Pancreatitis and Pancreatic Cancer.Gut Liver. 2018 Sep 15;12(5):591-596. doi: 10.5009/gnl17391.
32 Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don't forget MEN1 genetic analysis.Eur J Endocrinol. 2013 Mar 15;168(4):533-41. doi: 10.1530/EJE-12-0763. Print 2013 Apr.
33 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
34 Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro. Toxicol In Vitro. 2015 Apr;29(3):489-501.
35 Retinoic acid and its 4-oxo metabolites are functionally active in human skin cells in vitro. J Invest Dermatol. 2005 Jul;125(1):143-53.
36 Bringing in vitro analysis closer to in vivo: studying doxorubicin toxicity and associated mechanisms in 3D human microtissues with PBPK-based dose modelling. Toxicol Lett. 2018 Sep 15;294:184-192.
37 17-Estradiol Activates HSF1 via MAPK Signaling in ER-Positive Breast Cancer Cells. Cancers (Basel). 2019 Oct 11;11(10):1533. doi: 10.3390/cancers11101533.
38 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
39 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
40 The contribution of methotrexate exposure and host factors on transcriptional variance in human liver. Toxicol Sci. 2007 Jun;97(2):582-94.
41 Selenium and vitamin E: cell type- and intervention-specific tissue effects in prostate cancer. J Natl Cancer Inst. 2009 Mar 4;101(5):306-20.
42 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
43 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
44 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
45 A trichostatin A expression signature identified by TempO-Seq targeted whole transcriptome profiling. PLoS One. 2017 May 25;12(5):e0178302. doi: 10.1371/journal.pone.0178302. eCollection 2017.
46 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
47 Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics. 2007 Jan;7(1):47-63.