General Information of Drug Off-Target (DOT) (ID: OT25JBA3)

DOT Name 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3)
Synonyms 6PF-2-K/Fru-2,6-P2ase 3; PFK/FBPase 3; 6PF-2-K/Fru-2,6-P2ase brain/placenta-type isozyme; Renal carcinoma antigen NY-REN-56; iPFK-2
Gene Name PFKFB3
UniProt ID
F263_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2AXN; 2DWO; 2DWP; 2I1V; 3QPU; 3QPV; 3QPW; 4D4J; 4D4K; 4D4L; 4D4M; 4MA4; 5AJV; 5AJW; 5AJX; 5AJY; 5AJZ; 5AK0; 6ETJ; 6HVH; 6HVI; 6HVJ; 6IBX; 6IBY; 6IBZ; 6IC0
EC Number
2.7.1.105; 3.1.3.46
Pfam ID
PF01591 ; PF00300
Sequence
MPLELTQSRVQKIWVPVDHRPSLPRSCGPKLTNSPTVIVMVGLPARGKTYISKKLTRYLN
WIGVPTKVFNVGEYRREAVKQYSSYNFFRPDNEEAMKVRKQCALAALRDVKSYLAKEGGQ
IAVFDATNTTRERRHMILHFAKENDFKAFFIESVCDDPTVVASNIMEVKISSPDYKDCNS
AEAMDDFMKRISCYEASYQPLDPDKCDRDLSLIKVIDVGRRFLVNRVQDHIQSRIVYYLM
NIHVQPRTIYLCRHGENEHNLQGRIGGDSGLSSRGKKFASALSKFVEEQNLKDLRVWTSQ
LKSTIQTAEALRLPYEQWKALNEIDAGVCEELTYEEIRDTYPEEYALREQDKYYYRYPTG
ESYQDLVQRLEPVIMELERQENVLVICHQAVLRCLLAYFLDKSAEEMPYLKCPLHTVLKL
TPVAYGCRVESIYLNVESVCTHRERSEDAKKGPNPLMRRNSVTPLASPEPTKKPRINSFE
EHVASTSAALPSCLPPEVPTQLPGQNMKGSRSSADSSRKH
Function Catalyzes both the synthesis and degradation of fructose 2,6-bisphosphate.
Tissue Specificity Ubiquitous.
KEGG Pathway
Fructose and mannose metabolism (hsa00051 )
Metabolic pathways (hsa01100 )
HIF-1 sig.ling pathway (hsa04066 )
AMPK sig.ling pathway (hsa04152 )
Reactome Pathway
Regulation of glycolysis by fructose 2,6-bisphosphate metabolism (R-HSA-9634600 )
BioCyc Pathway
MetaCyc:HS10144-MONOMER

Molecular Interaction Atlas (MIA) of This DOT

Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
This DOT Affected the Drug Response of 1 Drug(s)
Drug Name Drug ID Highest Status Interaction REF
Bevacizumab DMSD1UN Approved 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) increases the Hypertension ADR of Bevacizumab. [31]
------------------------------------------------------------------------------------
5 Drug(s) Affected the Post-Translational Modifications of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the methylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [1]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the methylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [16]
PMID28870136-Compound-52 DMFDERP Patented PMID28870136-Compound-52 decreases the phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [20]
Coumarin DM0N8ZM Investigative Coumarin increases the phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [20]
Hexadecanoic acid DMWUXDZ Investigative Hexadecanoic acid decreases the phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [27]
------------------------------------------------------------------------------------
32 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Ciclosporin DMAZJFX Approved Ciclosporin decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [2]
Tretinoin DM49DUI Approved Tretinoin increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [3]
Acetaminophen DMUIE76 Approved Acetaminophen affects the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [4]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [5]
Estradiol DMUNTE3 Approved Estradiol decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [2]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [6]
Arsenic DMTL2Y1 Approved Arsenic decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [7]
Quercetin DM3NC4M Approved Quercetin decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [8]
Temozolomide DMKECZD Approved Temozolomide increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [9]
Vorinostat DMWMPD4 Approved Vorinostat decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [10]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [11]
Decitabine DMQL8XJ Approved Decitabine increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [12]
Ethanol DMDRQZU Approved Ethanol decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [13]
Aspirin DM672AH Approved Aspirin decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [14]
Acetic Acid, Glacial DM4SJ5Y Approved Acetic Acid, Glacial increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [15]
Motexafin gadolinium DMEJKRF Approved Motexafin gadolinium increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [15]
Ampicillin DMHWE7P Approved Ampicillin increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [8]
SNDX-275 DMH7W9X Phase 3 SNDX-275 decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [10]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [17]
GSK525762 DMPAWBN Phase 1 GSK525762 increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [18]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [19]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [21]
Bisphenol A DM2ZLD7 Investigative Bisphenol A affects the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [22]
Milchsaure DM462BT Investigative Milchsaure decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [23]
chloropicrin DMSGBQA Investigative chloropicrin increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [24]
GALLICACID DM6Y3A0 Investigative GALLICACID increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [25]
Nickel chloride DMI12Y8 Investigative Nickel chloride increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [26]
OXYQUINOLINE DMZVS9Y Investigative OXYQUINOLINE decreases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [8]
Resorcinol DMM37C0 Investigative Resorcinol increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [28]
Benzoquinone DMNBA0G Investigative Benzoquinone increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [29]
I-BET151 DMYRUH2 Investigative I-BET151 increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [18]
2-(carboxymethylamino)-2-oxoacetic acid DMQ2SNL Investigative 2-(carboxymethylamino)-2-oxoacetic acid increases the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). [30]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 Drug(s)

References

1 Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology. 2018 Jan 15;393:160-170.
2 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
3 Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7653-8.
4 Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors. Toxicol In Vitro. 2015 Sep;29(6):1231-9. doi: 10.1016/j.tiv.2014.10.012. Epub 2014 Oct 24.
5 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
6 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
7 Gene expression profiles in peripheral lymphocytes by arsenic exposure and skin lesion status in a Bangladeshi population. Cancer Epidemiol Biomarkers Prev. 2006 Jul;15(7):1367-75. doi: 10.1158/1055-9965.EPI-06-0106.
8 Comparison of phenotypic and transcriptomic effects of false-positive genotoxins, true genotoxins and non-genotoxins using HepG2 cells. Mutagenesis. 2011 Sep;26(5):593-604.
9 Temozolomide induces activation of Wnt/-catenin signaling in glioma cells via PI3K/Akt pathway: implications in glioma therapy. Cell Biol Toxicol. 2020 Jun;36(3):273-278. doi: 10.1007/s10565-019-09502-7. Epub 2019 Nov 22.
10 Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Arch Toxicol. 2017 Feb;91(2):839-864.
11 Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay. Toxicol Sci. 2015 Aug;146(2):311-20. doi: 10.1093/toxsci/kfv094. Epub 2015 May 15.
12 Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol. 2011 Oct;5(5):438-53. doi: 10.1016/j.molonc.2011.07.003. Epub 2011 Jul 26.
13 Gene expression signatures after ethanol exposure in differentiating embryoid bodies. Toxicol In Vitro. 2018 Feb;46:66-76.
14 Expression profile analysis of colon cancer cells in response to sulindac or aspirin. Biochem Biophys Res Commun. 2002 Mar 29;292(2):498-512.
15 Motexafin gadolinium and zinc induce oxidative stress responses and apoptosis in B-cell lymphoma lines. Cancer Res. 2005 Dec 15;65(24):11676-88.
16 Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget. 2017 Jan 3;8(1):1369-1391. doi: 10.18632/oncotarget.13622.
17 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
18 The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017 Jan 5;36(1):122-132. doi: 10.1038/onc.2016.184. Epub 2016 Jun 13.
19 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
20 Quantitative phosphoproteomics reveal cellular responses from caffeine, coumarin and quercetin in treated HepG2 cells. Toxicol Appl Pharmacol. 2022 Aug 15;449:116110. doi: 10.1016/j.taap.2022.116110. Epub 2022 Jun 7.
21 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
22 Comprehensive analysis of transcriptomic changes induced by low and high doses of bisphenol A in HepG2 spheroids in vitro and rat liver in vivo. Environ Res. 2019 Jun;173:124-134. doi: 10.1016/j.envres.2019.03.035. Epub 2019 Mar 18.
23 Transcriptional profiling of lactic acid treated reconstructed human epidermis reveals pathways underlying stinging and itch. Toxicol In Vitro. 2019 Jun;57:164-173.
24 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
25 Gene expression profile analysis of gallic acid-induced cell death process. Sci Rep. 2021 Aug 18;11(1):16743. doi: 10.1038/s41598-021-96174-1.
26 The contact allergen nickel triggers a unique inflammatory and proangiogenic gene expression pattern via activation of NF-kappaB and hypoxia-inducible factor-1alpha. J Immunol. 2007 Mar 1;178(5):3198-207.
27 Functional lipidomics: Palmitic acid impairs hepatocellular carcinoma development by modulating membrane fluidity and glucose metabolism. Hepatology. 2017 Aug;66(2):432-448. doi: 10.1002/hep.29033. Epub 2017 Jun 16.
28 A transcriptomics-based in vitro assay for predicting chemical genotoxicity in vivo. Carcinogenesis. 2012 Jul;33(7):1421-9.
29 Overexpression of HIF-1a could partially protect K562 cells from 1,4-benzoquinone induced toxicity by inhibiting ROS, apoptosis and enhancing glycolysis. Toxicol In Vitro. 2019 Mar;55:18-23. doi: 10.1016/j.tiv.2018.11.005. Epub 2018 Nov 15.
30 Vulnerability of HIF1 and HIF2 to damage by proteotoxic stressors. Toxicol Appl Pharmacol. 2022 Jun 15;445:116041. doi: 10.1016/j.taap.2022.116041. Epub 2022 Apr 30.
31 Genetic variant predicts bevacizumab-induced hypertension in ECOG-5103 and ECOG-2100. Br J Cancer. 2014 Sep 9;111(6):1241-8. doi: 10.1038/bjc.2014.430. Epub 2014 Aug 12.