General Information of Drug Off-Target (DOT) (ID: OT5B6R9Y)

DOT Name Glycine--tRNA ligase (GARS1)
Synonyms EC 6.1.1.14; Diadenosine tetraphosphate synthetase; Ap4A synthetase; EC 2.7.7.-; Glycyl-tRNA synthetase; GlyRS; Glycyl-tRNA synthetase 1
Gene Name GARS1
Related Disease
Charcot-Marie-Tooth disease type 2D ( )
Myocardial infarction ( )
Neoplasm ( )
Neuronopathy, distal hereditary motor, type 5A ( )
Rheumatoid arthritis ( )
Calciphylaxis ( )
Charcot-Marie-Tooth disease type 2 ( )
Dermatomyositis ( )
Estrogen-receptor positive breast cancer ( )
Hereditary motor and sensory neuropathy ( )
Juvenile amyotrophic lateral sclerosis ( )
Mitochondrial disease ( )
Myositis disease ( )
Neurodegenerative disease ( )
Plasma cell myeloma ( )
Amyotrophic lateral sclerosis ( )
Hyperekplexia ( )
Spinal muscular atrophy ( )
Spinal muscular atrophy, infantile, James type ( )
Charcot-Marie-Tooth disease type 3 ( )
Congenital generalized lipodystrophy ( )
Corpus callosum, agenesis of ( )
Distal hereditary motor neuropathy ( )
Hepatocellular carcinoma ( )
Hereditary spastic paraplegia 17 ( )
Intellectual disability ( )
Neuronopathy, distal hereditary motor, type 5 ( )
Peripheral neuropathy ( )
Peripheral sensory neuropathies ( )
Silver-Russell syndrome ( )
UniProt ID
GARS_HUMAN
3D Structure
Download
2D Sequence (FASTA)
Download
3D Structure (PDB)
Download
PDB ID
2PME; 2PMF; 2Q5H; 2Q5I; 2ZT5; 2ZT6; 2ZT7; 2ZT8; 2ZXF; 4KQE; 4KR2; 4KR3; 4QEI; 5E6M
EC Number
2.7.7.-; 6.1.1.14
Pfam ID
PF03129 ; PF00587 ; PF00458
Sequence
MPSPRPVLLRGARAALLLLLPPRLLARPSLLLRRSLSAASCPPISLPAAASRSSMDGAGA
EEVLAPLRLAVRQQGDLVRKLKEDKAPQVDVDKAVAELKARKRVLEAKELALQPKDDIVD
RAKMEDTLKRRFFYDQAFAIYGGVSGLYDFGPVGCALKNNIIQTWRQHFIQEEQILEIDC
TMLTPEPVLKTSGHVDKFADFMVKDVKNGECFRADHLLKAHLQKLMSDKKCSVEKKSEME
SVLAQLDNYGQQELADLFVNYNVKSPITGNDLSPPVSFNLMFKTFIGPGGNMPGYLRPET
AQGIFLNFKRLLEFNQGKLPFAAAQIGNSFRNEISPRSGLIRVREFTMAEIEHFVDPSEK
DHPKFQNVADLHLYLYSAKAQVSGQSARKMRLGDAVEQGVINNTVLGYFIGRIYLYLTKV
GISPDKLRFRQHMENEMAHYACDCWDAESKTSYGWIEIVGCADRSCYDLSCHARATKVPL
VAEKPLKEPKTVNVVQFEPSKGAIGKAYKKDAKLVMEYLAICDECYITEMEMLLNEKGEF
TIETEGKTFQLTKDMINVKRFQKTLYVEEVVPNVIEPSFGLGRIMYTVFEHTFHVREGDE
QRTFFSFPAVVAPFKCSVLPLSQNQEFMPFVKELSEALTRHGVSHKVDDSSGSIGRRYAR
TDEIGVAFGVTIDFDTVNKTPHTATLRDRDSMRQIRAEISELPSIVQDLANGNITWADVE
ARYPLFEGQETGKKETIEE
Function
Catalyzes the ATP-dependent ligation of glycine to the 3'-end of its cognate tRNA, via the formation of an aminoacyl-adenylate intermediate (Gly-AMP). Also produces diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs. Thereby, may play a special role in Ap4A homeostasis.
Tissue Specificity
Widely expressed, including in brain and spinal cord.; [Isoform 2]: Expressed in brain, spinal cord, muscle, heart and spleen.; [Isoform 1]: Expressed in brain, spinal cord, muscle, heart, spleen and liver.
KEGG Pathway
Aminoacyl-tR. biosynthesis (hsa00970 )
Reactome Pathway
Mitochondrial tRNA aminoacylation (R-HSA-379726 )
Cytosolic tRNA aminoacylation (R-HSA-379716 )

Molecular Interaction Atlas (MIA) of This DOT

30 Disease(s) Related to This DOT
Disease Name Disease ID Evidence Level Mode of Inheritance REF
Charcot-Marie-Tooth disease type 2D DISC7AJY Definitive Autosomal dominant [1]
Myocardial infarction DIS655KI Definitive Biomarker [2]
Neoplasm DISZKGEW Definitive Altered Expression [3]
Neuronopathy, distal hereditary motor, type 5A DISD3JAD Definitive Autosomal dominant [4]
Rheumatoid arthritis DISTSB4J Definitive Biomarker [5]
Calciphylaxis DIS2Y594 Strong Biomarker [6]
Charcot-Marie-Tooth disease type 2 DISR30O9 Strong Genetic Variation [7]
Dermatomyositis DIS50C5O Strong Biomarker [8]
Estrogen-receptor positive breast cancer DIS1H502 Strong Posttranslational Modification [9]
Hereditary motor and sensory neuropathy DISR0X2K Strong Biomarker [10]
Juvenile amyotrophic lateral sclerosis DISKDZC9 Strong Biomarker [11]
Mitochondrial disease DISKAHA3 Strong Genetic Variation [12]
Myositis disease DISCIXF0 Strong Altered Expression [8]
Neurodegenerative disease DISM20FF Strong Genetic Variation [13]
Plasma cell myeloma DIS0DFZ0 Strong Biomarker [14]
Amyotrophic lateral sclerosis DISF7HVM moderate Biomarker [15]
Hyperekplexia DISY3CG8 moderate Biomarker [16]
Spinal muscular atrophy DISTLKOB moderate Biomarker [17]
Spinal muscular atrophy, infantile, James type DISGL03T Moderate Autosomal dominant [18]
Charcot-Marie-Tooth disease type 3 DIS6DQK1 Limited Biomarker [10]
Congenital generalized lipodystrophy DIS4XF8N Limited Genetic Variation [19]
Corpus callosum, agenesis of DISO9P40 Limited Genetic Variation [20]
Distal hereditary motor neuropathy DISGS2ID Limited Genetic Variation [12]
Hepatocellular carcinoma DIS0J828 Limited Biomarker [21]
Hereditary spastic paraplegia 17 DISI7Y7F Limited Biomarker [19]
Intellectual disability DISMBNXP Limited Genetic Variation [20]
Neuronopathy, distal hereditary motor, type 5 DISTSHF6 Limited Genetic Variation [22]
Peripheral neuropathy DIS7KN5G Limited Genetic Variation [23]
Peripheral sensory neuropathies DISYWI6M Limited Genetic Variation [24]
Silver-Russell syndrome DISSVJ1D Limited Biomarker [19]
------------------------------------------------------------------------------------
⏷ Show the Full List of 30 Disease(s)
Molecular Interaction Atlas (MIA) Jump to Detail Molecular Interaction Atlas of This DOT
32 Drug(s) Affected the Gene/Protein Processing of This DOT
Drug Name Drug ID Highest Status Interaction REF
Valproate DMCFE9I Approved Valproate increases the expression of Glycine--tRNA ligase (GARS1). [25]
Ciclosporin DMAZJFX Approved Ciclosporin increases the expression of Glycine--tRNA ligase (GARS1). [26]
Tretinoin DM49DUI Approved Tretinoin decreases the expression of Glycine--tRNA ligase (GARS1). [27]
Acetaminophen DMUIE76 Approved Acetaminophen increases the expression of Glycine--tRNA ligase (GARS1). [28]
Cupric Sulfate DMP0NFQ Approved Cupric Sulfate increases the expression of Glycine--tRNA ligase (GARS1). [29]
Cisplatin DMRHGI9 Approved Cisplatin increases the expression of Glycine--tRNA ligase (GARS1). [30]
Estradiol DMUNTE3 Approved Estradiol increases the expression of Glycine--tRNA ligase (GARS1). [26]
Ivermectin DMDBX5F Approved Ivermectin decreases the expression of Glycine--tRNA ligase (GARS1). [31]
Arsenic trioxide DM61TA4 Approved Arsenic trioxide increases the expression of Glycine--tRNA ligase (GARS1). [32]
Carbamazepine DMZOLBI Approved Carbamazepine affects the expression of Glycine--tRNA ligase (GARS1). [33]
Marinol DM70IK5 Approved Marinol affects the expression of Glycine--tRNA ligase (GARS1). [34]
Phenobarbital DMXZOCG Approved Phenobarbital increases the expression of Glycine--tRNA ligase (GARS1). [35]
Progesterone DMUY35B Approved Progesterone increases the expression of Glycine--tRNA ligase (GARS1). [36]
Diclofenac DMPIHLS Approved Diclofenac affects the expression of Glycine--tRNA ligase (GARS1). [33]
Cidofovir DMA13GD Approved Cidofovir increases the expression of Glycine--tRNA ligase (GARS1). [30]
Fenofibrate DMFKXDY Approved Fenofibrate increases the expression of Glycine--tRNA ligase (GARS1). [30]
Ifosfamide DMCT3I8 Approved Ifosfamide increases the expression of Glycine--tRNA ligase (GARS1). [30]
Clodronate DM9Y6X7 Approved Clodronate increases the expression of Glycine--tRNA ligase (GARS1). [30]
Vitamin C DMXJ7O8 Approved Vitamin C decreases the expression of Glycine--tRNA ligase (GARS1). [37]
Ursodeoxycholic acid DMCUT21 Approved Ursodeoxycholic acid affects the expression of Glycine--tRNA ligase (GARS1). [38]
Gefitinib DM15F0X Approved Gefitinib increases the expression of Glycine--tRNA ligase (GARS1). [39]
Bexarotene DMOBIKY Approved Bexarotene decreases the expression of Glycine--tRNA ligase (GARS1). [40]
Epanova DMHEAGL Approved Epanova decreases the expression of Glycine--tRNA ligase (GARS1). [41]
Urethane DM7NSI0 Phase 4 Urethane increases the expression of Glycine--tRNA ligase (GARS1). [42]
Benzo(a)pyrene DMN7J43 Phase 1 Benzo(a)pyrene decreases the expression of Glycine--tRNA ligase (GARS1). [26]
Leflunomide DMR8ONJ Phase 1 Trial Leflunomide increases the expression of Glycine--tRNA ligase (GARS1). [44]
PMID28460551-Compound-2 DM4DOUB Patented PMID28460551-Compound-2 increases the expression of Glycine--tRNA ligase (GARS1). [45]
THAPSIGARGIN DMDMQIE Preclinical THAPSIGARGIN increases the expression of Glycine--tRNA ligase (GARS1). [46]
Bisphenol A DM2ZLD7 Investigative Bisphenol A increases the expression of Glycine--tRNA ligase (GARS1). [47]
Sulforaphane DMQY3L0 Investigative Sulforaphane increases the expression of Glycine--tRNA ligase (GARS1). [48]
chloropicrin DMSGBQA Investigative chloropicrin affects the expression of Glycine--tRNA ligase (GARS1). [49]
3R14S-OCHRATOXIN A DM2KEW6 Investigative 3R14S-OCHRATOXIN A decreases the expression of Glycine--tRNA ligase (GARS1). [50]
------------------------------------------------------------------------------------
⏷ Show the Full List of 32 Drug(s)
1 Drug(s) Affected the Protein Interaction/Cellular Processes of This DOT
Drug Name Drug ID Highest Status Interaction REF
DNCB DMDTVYC Phase 2 DNCB affects the binding of Glycine--tRNA ligase (GARS1). [43]
------------------------------------------------------------------------------------

References

1 Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020 Feb;22(2):245-257. doi: 10.1038/s41436-019-0686-8. Epub 2019 Nov 6.
2 Smad1 protects cardiomyocytes from ischemia-reperfusion injury.Circulation. 2005 May 31;111(21):2752-9. doi: 10.1161/CIRCULATIONAHA.104.490946. Epub 2005 May 23.
3 Exploration of Shh and BMP paracrine signaling in a prostate cancer xenograft.Differentiation. 2010 Jan;79(1):41-7. doi: 10.1016/j.diff.2009.08.009. Epub 2009 Sep 20.
4 The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022 Aug;24(8):1732-1742. doi: 10.1016/j.gim.2022.04.017. Epub 2022 May 4.
5 miR-26a-5p Regulates Synovial Fibroblast Invasion in Patients with Rheumatoid Arthritis by Targeting Smad 1.Med Sci Monit. 2018 Jul 26;24:5178-5184. doi: 10.12659/MSM.907816.
6 Increased Bone Morphogenetic Protein Signaling in the Cutaneous Vasculature of Patients with Calciphylaxis.Am J Nephrol. 2017;46(5):429-438. doi: 10.1159/000484418. Epub 2017 Nov 9.
7 Dimerization is required for GARS-mediated neurotoxicity in dominant CMT disease.Hum Mol Genet. 2016 Apr 15;25(8):1528-42. doi: 10.1093/hmg/ddw031. Epub 2016 Feb 7.
8 Primary structure and functional expression of human Glycyl-tRNA synthetase, an autoantigen in myositis.J Biol Chem. 1994 Nov 18;269(46):28790-7.
9 First evidence supporting a potential role for the BMP/SMAD pathway in the progression of oestrogen receptor-positive breast cancer.J Pathol. 2005 Jul;206(3):366-76. doi: 10.1002/path.1785.
10 Charcot-Marie-Tooth-linked mutant GARS is toxic to peripheral neurons independent of wild-type GARS levels.PLoS Genet. 2011 Dec;7(12):e1002399. doi: 10.1371/journal.pgen.1002399. Epub 2011 Dec 1.
11 Phenotypic and genotypic heterogeneity in hereditary motor neuronopathy type V: a clinical, electrophysiological and genetic study.Brain. 2000 Aug;123 ( Pt 8):1612-23. doi: 10.1093/brain/123.8.1612.
12 Compound heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic mitochondrial disease.BMC Med Genet. 2014 Mar 26;15:36. doi: 10.1186/1471-2350-15-36.
13 Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene.Neurology. 2006 Nov 14;67(9):1710-2. doi: 10.1212/01.wnl.0000242619.52335.bc.
14 Utilizing BMP-2 muteins for treatment of multiple myeloma.PLoS One. 2017 May 10;12(5):e0174884. doi: 10.1371/journal.pone.0174884. eCollection 2017.
15 Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis.Mol Neurobiol. 2012 Feb;45(1):30-42. doi: 10.1007/s12035-011-8217-x. Epub 2011 Nov 10.
16 A Missense Mutation A384P Associated with Human Hyperekplexia Reveals a Desensitization Site of Glycine Receptors.J Neurosci. 2018 Mar 14;38(11):2818-2831. doi: 10.1523/JNEUROSCI.0674-16.2018. Epub 2018 Feb 13.
17 UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy.Brain. 2018 Oct 1;141(10):2878-2894. doi: 10.1093/brain/awy237.
18 Classification of Genes: Standardized Clinical Validity Assessment of Gene-Disease Associations Aids Diagnostic Exome Analysis and Reclassifications. Hum Mutat. 2017 May;38(5):600-608. doi: 10.1002/humu.23183. Epub 2017 Feb 13.
19 Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome.J Neurol Sci. 2007 Dec 15;263(1-2):100-6. doi: 10.1016/j.jns.2007.06.047. Epub 2007 Jul 30.
20 Charcot-Marie-Tooth disease (CMT): distinctive phenotypic and genotypic features in CMT type 2.J Neurol Sci. 2001 Feb 15;184(1):1-9. doi: 10.1016/s0022-510x(00)00497-4.
21 Decreased BMP-7 and p-Smad1/5/8 expression, and increased levels of gremlin in hepatocellular carcinoma.Oncol Lett. 2018 Aug;16(2):2113-2118. doi: 10.3892/ol.2018.8918. Epub 2018 Jun 6.
22 A Novel Mutation of GARS in a Chinese Family With Distal Hereditary Motor Neuropathy Type V.Front Neurol. 2018 Jul 23;9:571. doi: 10.3389/fneur.2018.00571. eCollection 2018.
23 Allele-specific RNA interference prevents neuropathy in Charcot-Marie-Tooth disease type 2D mouse models.J Clin Invest. 2019 Dec 2;129(12):5568-5583. doi: 10.1172/JCI130600.
24 A recurrent GARS mutation causes distal hereditary motor neuropathy.J Peripher Nerv Syst. 2019 Dec;24(4):320-323. doi: 10.1111/jns.12353. Epub 2019 Nov 22.
25 Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Arch Toxicol. 2013 Jan;87(1):123-43.
26 Comparison of HepG2 and HepaRG by whole-genome gene expression analysis for the purpose of chemical hazard identification. Toxicol Sci. 2010 May;115(1):66-79.
27 Benzodithiophenes potentiate differentiation of acute promyelocytic leukemia cells by lowering the threshold for ligand-mediated corepressor/coactivator exchange with retinoic acid receptor alpha and enhancing changes in all-trans-retinoic acid-regulated gene expression. Cancer Res. 2005 Sep 1;65(17):7856-65. doi: 10.1158/0008-5472.CAN-05-1056.
28 Multiple microRNAs function as self-protective modules in acetaminophen-induced hepatotoxicity in humans. Arch Toxicol. 2018 Feb;92(2):845-858.
29 Physiological and toxicological transcriptome changes in HepG2 cells exposed to copper. Physiol Genomics. 2009 Aug 7;38(3):386-401.
30 Transcriptomics hit the target: monitoring of ligand-activated and stress response pathways for chemical testing. Toxicol In Vitro. 2015 Dec 25;30(1 Pt A):7-18.
31 Quantitative proteomics reveals a broad-spectrum antiviral property of ivermectin, benefiting for COVID-19 treatment. J Cell Physiol. 2021 Apr;236(4):2959-2975. doi: 10.1002/jcp.30055. Epub 2020 Sep 22.
32 Essential role of cell cycle regulatory genes p21 and p27 expression in inhibition of breast cancer cells by arsenic trioxide. Med Oncol. 2011 Dec;28(4):1225-54.
33 Drug-induced endoplasmic reticulum and oxidative stress responses independently sensitize toward TNF-mediated hepatotoxicity. Toxicol Sci. 2014 Jul;140(1):144-59. doi: 10.1093/toxsci/kfu072. Epub 2014 Apr 20.
34 JunD is involved in the antiproliferative effect of Delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene. 2008 Aug 28;27(37):5033-44.
35 Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells. Toxicol Appl Pharmacol. 2009 Feb 1;234(3):345-60.
36 Gene expression in endometrial cancer cells (Ishikawa) after short time high dose exposure to progesterone. Steroids. 2008 Jan;73(1):116-28.
37 Antiproliferative effect of ascorbic acid is associated with the inhibition of genes necessary to cell cycle progression. PLoS One. 2009;4(2):e4409.
38 Gene expression profiling of early primary biliary cirrhosis: possible insights into the mechanism of action of ursodeoxycholic acid. Liver Int. 2008 Aug;28(7):997-1010. doi: 10.1111/j.1478-3231.2008.01744.x. Epub 2008 Apr 15.
39 Identification of genes linked to gefitinib treatment in prostate cancer cell lines with or without resistance to androgen: a clue to application of gefitinib to hormone-resistant prostate cancer. Oncol Rep. 2006 Jun;15(6):1453-60.
40 Identification of biomarkers modulated by the rexinoid LGD1069 (bexarotene) in human breast cells using oligonucleotide arrays. Cancer Res. 2006 Dec 15;66(24):12009-18.
41 Differential effects of omega-3 and omega-6 Fatty acids on gene expression in breast cancer cells. Breast Cancer Res Treat. 2007 Jan;101(1):7-16. doi: 10.1007/s10549-006-9269-x. Epub 2006 Jul 6.
42 Ethyl carbamate induces cell death through its effects on multiple metabolic pathways. Chem Biol Interact. 2017 Nov 1;277:21-32.
43 Proteomic analysis of the cellular response to a potent sensitiser unveils the dynamics of haptenation in living cells. Toxicology. 2020 Dec 1;445:152603. doi: 10.1016/j.tox.2020.152603. Epub 2020 Sep 28.
44 Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology. 2017 Dec 1;392:11-21.
45 Cell-based two-dimensional morphological assessment system to predict cancer drug-induced cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol. 2019 Nov 15;383:114761. doi: 10.1016/j.taap.2019.114761. Epub 2019 Sep 15.
46 Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 2012;20(4):265-80.
47 Bisphenol A induces DSB-ATM-p53 signaling leading to cell cycle arrest, senescence, autophagy, stress response, and estrogen release in human fetal lung fibroblasts. Arch Toxicol. 2018 Apr;92(4):1453-1469.
48 Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells. Food Chem Toxicol. 2020 Feb;136:111047. doi: 10.1016/j.fct.2019.111047. Epub 2019 Dec 12.
49 Transcriptomic analysis of human primary bronchial epithelial cells after chloropicrin treatment. Chem Res Toxicol. 2015 Oct 19;28(10):1926-35.
50 Persistence of epigenomic effects after recovery from repeated treatment with two nephrocarcinogens. Front Genet. 2018 Dec 3;9:558.